Symmetry and Combinatorial Enumeration in Chemistry

Author:   Shinsaku Fujita
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1991
ISBN:  

9783540541264


Pages:   368
Publication Date:   05 September 1991
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $155.63 Quantity:  
Add to Cart

Share |

Symmetry and Combinatorial Enumeration in Chemistry


Add your own review!

Overview

Understanding the concepts of stereochemistry, prochirality, and topicity is crucial for chemists in all fields. Shinsaku Fujita presents chemical group theory differently from conventional textbooks. The author's approach emphasizes conjugate subgroups to solve discrete stereochemical problems. He introduces several new concepts, integrating point-group and permutation-group representations, and treats stereochemistry much more comprehensively. This advanced textbook on organic stereochemistry, symmetry, chirality, combinatorial enumeration, graph theory and group theory is intended for graduate students and researchers in organic chemistry, theoretical chemistry and applied mathematics.

Full Product Details

Author:   Shinsaku Fujita
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1991
Dimensions:   Width: 15.50cm , Height: 2.00cm , Length: 23.50cm
Weight:   0.581kg
ISBN:  

9783540541264


ISBN 10:   3540541268
Pages:   368
Publication Date:   05 September 1991
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1 Introduction.- 2 Symmetry and Point Groups.- 2.1 Symmetry Operations and Elements.- 2.2 Conjugacy Glasses in Point Groups.- 2.3 Subgroups of Point Groups.- 2.4 Conjugate and Normal Subgroups of Point Groups.- 2.5 Non-Redundant Set of Subgroups for a Point Group.- 3 Permutation Groups.- 3.1 Permutations and Cycles.- 3.2 Permutation Groups.- 3.3 Transitivity and Orbits..- 3.4 Symmetric Groups.- 3.5 Parity.- 3.6 Alternating Groups.- 4 Axioms and Theorems of Group Theory.- 4.1 Axioms and Multiplication Tables.- 4.2 Subgroups.- 4.3 Cosets.- 4.4 Equivalence Relations.- 4.5 Conjugacy Classes.- 4.6 Conjugate and Normal Subgroups.- 4.7 Subgroup Lattices.- 4.8 Cyclic Groups.- 5 Coset Representations and Orbits.- 5.1 Coset Representations.- 5.2 Transitive Permutation Representations.- 5.3 Mark Tables.- 5.4 Permutation Representations and Orbits.- 6 Systematic Classification of Molecular Symmetries.- 6.1 Assignment of Coset Representations to Orbits.- 6.2 SCR Notation.- 7 Local Symmetries and Forbidden Coset Representations.- 7.1 Blocks and Local Symmetries.- 7.2 Forbidden Coset Representations.- 8 Chirality Fittingness of an Orbit.- 8.1 Ligands.- 8.2 Behavior of Cosets on the Action of a CR.- 8.3 Chirality Fittingness of an Orbit.- 9 Subduction of Coset Representations.- 9.1 Subduction of Coset Representations.- 9.2 Subduced Mark Table.- 9.3 Chemical Meaning of Subduction.- 9.4 Unit Subduced Cycle Indices.- 9.5 Unit Subduced Cycle Indices with Chirality Fittingness.- 9.6 Desymmetrization Lattice.- 10 Prochirality.- 10.1 Desymmetrization of Enantiospheric Orbits.- 10.2 Prochirality.- 10.3 Further Desymmetrization of Enantiospheric Orbits.- 10.4 Chiral syntheses.- 11 Desymmetrization of Para-Achiral Compounds.- 11.1 Chiral Subduction of Homospheric Orbits.- 11.2 Desymmetrization of Homospheric Orbits.- 11.3 Chemoselective and Stereoselective Processes.- 12 Topicity and Stereogenicity.- 12.1 Topicity Based On Chirality Fittingness of an Orbit.- 12.2 Stereogenicity.- 13 Counting Orbits.- 13.1 The Cauchy-Frobenius Lemma.- 13.2 Configurations.- 13.3 The Pólya-Redfield Theorem.- 14 Obligatory Minimum Valencies.- 14.1 Isomer Enumeration under the OMV Restriction.- 14.2 Unit Cycle Indices.- 15 Compounds with Achiral Ligands Only.- 15.1 Compounds with Given Symmetries.- 15.2 Compounds with Given Symmetries and Weight.- 16 New Cycle Index.- 16.1 New Cycle Indices Based On USCIs.- 16.2 Correlation of New Cycle Indices to Pólya’s Theorem.- 16.3 Partial Cycle Indices.- 17 Cage-Shaped Molecules with High Symmetries.- 17.1 Edge Strategy.- 17.2 Tricyclodecanes with Td and Its Subsymmetries.- 17.3 Use of Another Ligand-Inventory.- 17.4 New Type of Cycle Index.- 18 Elementary Superposition.- 18.1 The USCI Approach.- 18.2 Elementary Superposition.- 18.3 Superposition for Other Indices.- 19 Compounds with Achiral and Chiral Ligands.- 19.1 Compounds with Given Symmetries.- 19.2 Compounds with Given Symmetries and Weights.- 19.3 Compounds with Given Weights.- 19.4 Special Cases.- 19.5 Other Indices.- 20 Compounds with Rotatable Ligands.- 20.1 Rigid Skeleton and Rotatable Ligands.- 20.2 Enumeration of Rotatable Ligands.- 20.3 Enumeration of Non-Rigid Isomers.- 20.4 Total Numbers.- 20.5 Typical Procedure for Enumeration.- 21 Promolecules.- 21.1 Molecular Models.- 21.2 Proligands and Promolecules.- 21.3 Enumeration of Promolecules.- 21.4 Molecules Based on Promolecules.- 21.5 Prochiralities of Promolecules and Molecules.- 21.6 Concluding Remarks.- 22 Appendix A. Mark Tables.- A.1 Td Point Group and Its Subgroups.- A. 2 D3h Point Group and Its Subgroups.- 23Appendix B. Inverses of Mark Tables.- B. 1 Td Point Group and Its Subgroups.- B. 2 D3h Point Group and Its Subgroups.- 24 Appendix C. Subduction Tables.- C. 1 Td Point Group and Its Subgroups.- C. 2 D3h Point Group and Its Subgroups.- 25 Appendix D. Tables of USCIs.- D. 1 Td Point Group and Its Subgroups.- D. 2 D3h Point Group and Its Subgroups.- 26 Appendix E. Tables of USCI-CFs.- E. 1 Td Point Group and Its Subgroups.- E.2 D3h Point Group and Its Subgroups.- 27 Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

RGJUNE2025

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List