Swarm Intelligence for Multi-objective Problems in Data Mining

Author:   Carlos Coello Coello ,  Satchidananda Dehuri ,  Susmita Ghosh
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   2010 ed.
Volume:   242
ISBN:  

9783642260537


Pages:   287
Publication Date:   14 March 2012
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $448.77 Quantity:  
Add to Cart

Share |

Swarm Intelligence for Multi-objective Problems in Data Mining


Add your own review!

Overview

Multi-objective optimization deals with the simultaneous optimization of two or more objectives which are normally in con?ict with each other. Since mul- objective optimization problems are relatively common in real-world appli- tions, this area has become a very popular research topic since the 1970s. However, the use of bio-inspired metaheuristics for solving multi-objective op- mization problems started in the mid-1980s and became popular until the mid- 1990s. Nevertheless, the e?ectiveness of multi-objective evolutionary algorithms has made them very popular in a variety of domains. Swarm intelligence refers to certain population-based metaheuristics that are inspired on the behavior of groups of entities (i.e., living beings) interacting locallywitheachotherandwiththeirenvironment.Suchinteractionsproducean emergentbehaviorthatismodelledinacomputerinordertosolveproblems.The two most popular metaheuristics within swarm intelligence are particle swarm optimization (which simulates a ?ock of birds seeking food) and ant colony optimization (which simulates the behavior of colonies of real ants that leave their nest looking for food). These two metaheuristics havebecome verypopular inthelastfewyears,andhavebeenwidelyusedinavarietyofoptimizationtasks, including some related to data mining and knowledge discovery in databases. However, such work has been mainly focused on single-objective optimization models. The use of multi-objective extensions of swarm intelligence techniques in data mining has been relatively scarce, in spite of their great potential, which constituted the main motivation to produce this book.

Full Product Details

Author:   Carlos Coello Coello ,  Satchidananda Dehuri ,  Susmita Ghosh
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   2010 ed.
Volume:   242
Dimensions:   Width: 15.50cm , Height: 1.60cm , Length: 23.50cm
Weight:   0.468kg
ISBN:  

9783642260537


ISBN 10:   3642260535
Pages:   287
Publication Date:   14 March 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

An Introduction to Swarm Intelligence for Multi-objective Problems.- Multi-Criteria Ant Feature Selection Using Fuzzy Classifiers.- Multiobjective Particle Swarm Optimization in Classification-Rule Learning.- Using Multi-Objective Particle Swarm Optimization for Designing Novel Classifiers.- Optimizing Decision Trees Using Multi-objective Particle Swarm Optimization.- A Discrete Particle Swarm for Multi-objective Problems in Polynomial Neural Networks used for Classification: A Data Mining Perspective.- Rigorous Runtime Analysis of Swarm Intelligence Algorithms – An Overview.- Mining Rules: A Parallel Multiobjective Particle Swarm Optimization Approach.- The Basic Principles of Metric Indexing.- Particle Evolutionary Swarm Multi-Objective Optimization for Vehicle Routing Problem with Time Windows.- Combining Correlated Data from Multiple Classifiers.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List