Supervised and Unsupervised Ensemble Methods and their Applications

Author:   Oleg Okun
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of hardcover 1st ed. 2008
Volume:   126
ISBN:  

9783642097768


Pages:   182
Publication Date:   28 October 2010
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $393.36 Quantity:  
Add to Cart

Share |

Supervised and Unsupervised Ensemble Methods and their Applications


Add your own review!

Overview

The rapidly growing amount of data, available from di?erent technologies in the ?eld of bio-sciences, high-energy physics, economy, climate analysis, and in several other scienti?c disciplines, requires a new generation of machine learning and statistical methods to deal with their complexity and hete- geneity. As data collections becomes easier, data analysis is required to be more sophisticated in order to extract useful information from the available data. Even if data can be represented in several ways, according to their structural characteristics, ranging from strings, lists, trees to graphs and other more complex data structures, in most applications they are typically represented as a matrix whose rows correspond to measurable characteristics called f- tures, attributes, variables, depending on the considered discipline and whose columns correspond to examples (cases, samples, patterns). In order to avoid confusion,we will talk about features and examples.In real-worldtasks,there canbe manymorefeatures than examples(cancer classi?cationbasedongene expressionlevels in bioinformatics) or there can be many more examples than features(intrusion detection in computer/networksecurity). In addition, each example can be either labeled or not. Attaching labels allows to distinguish members of the same class or group from members of other classes or groups. Hence, one can talk about supervised and unsupervised tasks that can be solved by machine learning methods. Since it is widely accepted that no single classi?er or clustering algorithm canbesuperiortotheothers,ensemblesofsupervisedandunsupervisedme- ods are gaining popularity. A typical ensemble includes a number of clas- ?ers/clustererswhosepredictionsarecombinedtogetheraccordingtoacertain rule, e.g. majority vote.

Full Product Details

Author:   Oleg Okun
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of hardcover 1st ed. 2008
Volume:   126
Dimensions:   Width: 15.50cm , Height: 1.00cm , Length: 23.50cm
Weight:   0.454kg
ISBN:  

9783642097768


ISBN 10:   3642097766
Pages:   182
Publication Date:   28 October 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List