|
![]() |
|||
|
||||
OverviewStructure and Function of the Extracellular Matrix: A Multiscale Quantitative Approach introduces biomechanics and biophysics with applications to understand the biological function of the extracellular matrix in health and disease. A general multiscale approach is followed by investigating behavior from the scale of single molecules, through fibrils and fibers, to tissues of various organ systems. Through mathematical models and structural information, quantitative description of the extracellular matrix function is derived with tissue specific details. The book introduces the properties and organization of extracellular matrix components and quantitative models of the matrix, and guides the reader through predicting functional properties. This book integrates evolutionary biology with multiscale structure to quantitatively understand the function of the extracellular matrix. This approach allows a fresh look into normal functioning as well as the pathological alterations of the extracellular matrix. Professor Suki’s book is written to be useful to undergraduates, graduate students, and researchers interested in the quantitative aspects of the extracellular matrix. Researchers working in mechanotransduction, respiratory and cardiovascular mechanics, and multiscale biomechanics of tendon, cartilage, skin, and bone may also be interested in this book. Full Product DetailsAuthor: Bela Suki (Professor of Biomedical Engineering, Department of Biomedical Engineering, Boston University, USA)Publisher: Elsevier Science Publishing Co Inc Imprint: Academic Press Inc Weight: 0.720kg ISBN: 9780128197165ISBN 10: 0128197161 Pages: 282 Publication Date: 08 December 2021 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationHe earned an MS in physics (1982) and PhD in biomechanics and respiratory physiology (1987). He is now a professor of Biomedical Engineering at Boston University. Over the last 3 decades, he has worked in various areas of the life sciences including respiratory and vascular physiology and biomechanics, cell and tissue mechanics, computational fluid and solid mechanics applied to various physiological problems and complexity in physiology and biology. He has published over 230 papers, reviews and book chapters. He developed 3 relevant courses: 1) Structure and function of the extracellular matrix (BE 549); 2) Respiratory and cardiovascular engineering (BE 508); and 3) Nonlinear systems in biomedical engineering (BE 567). Tab Content 6Author Website:Countries AvailableAll regions |