|
![]() |
|||
|
||||
OverviewThis book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM. Full Product DetailsAuthor: Ruqiang Yan , Xuefeng Chen , Subhas Chandra MukhopadhyayPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: Softcover reprint of the original 1st ed. 2017 Volume: 26 Weight: 5.854kg ISBN: 9783319858326ISBN 10: 3319858327 Pages: 375 Publication Date: 25 July 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsAdvanced Signal Processing for Structural Health Monitoring.- Signal Post-Processing for Accurate Evaluation of the Natural Frequencies.- Holobalancing Method and its Improvement by Reselection of Balancing Object.- Wavelet Transform Based On Inner Product for Fault Diagnosis of Rotating Machinery.- Wavelet Based Spectral Kurtosis and Kurtogram: A Smart and Sparse Characterization of Impulsive Transient Vibration.- Time-Frequency Manifold for Machinery Fault Diagnosis.- Matching Demodulation Transform and its Application in Machine Fault Diagnosis.- Compressive Sensing: A New Insight to Condition Monitoring of Rotary Machinery.- Sparse Representation of the Transients in Mechanical Signals.- Fault Diagnosis of Rotating Machinery Based on Empirical Mode Decomposition.- Bivariate Empirical Mode Decomposition and Its Applications in Machine Condition Monitoring.- Time-Frequency Demodulation Analysis Based on LMD and Its Applications.- On The Use of Stochastic Resonance in Mechanical Fault Signal Detection.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |