|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: George C. SihPublisher: Springer Imprint: Kluwer Academic Publishers Volume: 5 Weight: 0.590kg ISBN: 9789028601666ISBN 10: 902860166 Pages: 308 Publication Date: December 1978 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Out of Print Availability: Out of stock ![]() Table of Contents1 Solutions of notch problems by body force method.- 1.1 Introduction.- 1.2 Principle of the body force method.- 1.3 Influence coefficients and fundamental stress fields.- 1.4 Fundamental stress field in problems of an infinite plate.- 1.5 Fundamental stress field in problems of a semi-infinite plate.- 1.6 Fundamental stress field of the strip problem.- 1.7 Fundamental stress field of the round bar problem.- 1.8 Appendix: Stress concentration factor and stress intensity factor solutions for notches and cracks.- References.- 2 Analysis of notches using conformai mapping.- 2.1 Introduction.- 2.2 Basic preliminaries.- 2.3 Approximating polynomial mapping functions.- 2.4 The MMC plus partitioning plan.- 2.5 Semi-elliptical notch in a semi-infinite sheet.- 2.6 Several notch solutions.- 2.7 Observations.- 2.8 Appendix.- References.- 3 Stress analysis of edge notches.- 3.1 Introduction.- 3.2 General solution of a single edge notch.- 3.3 Solution of set of equations.- 3.4 The symmetrical case.- 3.5 Mapping functions in symmetrical case.- 3.6 The semicircular notch.- 3.7 The circular notch in general.- 3.8 Solution of circular notch in bipolar coordinates.- 3.9 The semi-elliptic notch.- 3.10 The U-type notch.- 3.11 The V-type notch.- 3.12 A single notch in a strip.- 3.13 A pair of symmetrical notches in a strip.- 3.14 A pair of staggered notches in a strip.- 3.15 Multiple edge notches.- References.- 4 Three dimensional notch problems.- 4.1 Introduction.- 4.2 Ellipsoidal inclusions and inhomogeneities.- 4.3 Relations between ? and local coordinates.- 4.4 Expansion of the displacement field.- 4.5 Local stress distribution.- 4.6 Appendix A: Derivatives of f(x, y, z; ?).- 4.7 Appendix B: Limiting forms of some expressions in terms of local coordinates.- References.- Author's index.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |