|
![]() |
|||
|
||||
OverviewZiel dieses Buches ist die Beschreibung zufälliger geometrischer Strukturen durch geeignete mathematische Modelle. Es werden zwei Grundmodelle, zufällige abgeschlossene Mengen und die Punktprozesse von Mengen, eingeführt und untersucht. Sie werden spezialisiert auf die für Anwendungen wichtigsten Strukturen, wie das Boolesche Modell, Geraden- und Ebenenprozesse, zufällige Mosaike. Gestützt auf integralgeometrische Ergebnisse, werden die grundlegenden Formeln der Stereologie bereitgestellt. Besonderer Wert wird auf vollständige und ausführliche Beweise sowie auf die Verwendung möglichst einfacher geometrischer Objekte gelegt, die dennoch für Anwendungen hinreichend allgemein sind. Full Product DetailsAuthor: Rolf Schneider , Wolfgang WeilPublisher: Springer Fachmedien Wiesbaden Imprint: Vieweg+Teubner Verlag Edition: 2000 ed. Dimensions: Width: 16.10cm , Height: 2.00cm , Length: 23.50cm Weight: 0.587kg ISBN: 9783519027409ISBN 10: 3519027402 Pages: 360 Publication Date: 14 April 2000 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents1 Zufallige Mengen im euklidischen Raum.- 1.1 Der Raum der abgeschlossenen Mengen.- 1.2 Kompakte Mengen und die Hausdorff-Metrik.- 1.3 Zufällige abgeschlossene Mengen.- 1.4 Kenngrößen zufälliger Mengen.- 2 Zufallige Mengen - allgemeine Theorie.- 2.1 Zufällige Mengen in lokalkompakten Räumen.- 2.2 Der Satz von Choquet.- 2.3 Einige Folgerungen.- 3 Punktprozesse.- 3.1 Allgemeine Punktprozesse.- 3.2 Poissonprozesse.- 3.3 Punktprozesse im euklidischen Raum.- 3.4 Markierte Punktprozesse.- 3.5 Punktprozesse abgeschlossener Mengen.- 4 Geometrische Modelle.- 4.1 Ebenenprozesse.- 4.2 Partikelprozesse.- 4.3 Keim-Korn-Prozesse.- 4.4 Keim-Korn-Modelle.- 4.5 Assoziierte Körper.- 5 Funktionaldichten und Stereologie.- 5.1 Dichten additiver Funktionale.- 5.2 Ergodische Dichten.- 5.3 Stereologische Schnittformeln.- 5.4 Formeln für Boolesche Modelle.- 5.5 Dichteschätzung im stationären Fall.- 6 Zufällige Mosaike.- 6.1 Mosaike als Punktprozesse.- 6.2 Voronoi- und Delaunay-Mosaike.- 6.3 Hyperebenen-Mosaike.- 6.4 Mischungseigenschaften.- 7 Anhang.- 7.1 Konvexe Körper und Integralgeometrie.- 7.2 Integralgeometrische Transformationen.- 7.3 Simulationsbeispiele.- Symbolverzeichnis.Reviews"""This book will be very useful for students and university teachers dealing with stochastic geometry at any level. Since it contains a rich choice of nexer results and ideas, it is also of interest for researchers."" Mathematical Reviews, Okt. 01" ""This book will be very useful for students and university teachers dealing with stochastic geometry at any level. Since it contains a rich choice of nexer results and ideas, it is also of interest for researchers."" Mathematical Reviews, Okt. 01 This book will be very useful for students and university teachers dealing with stochastic geometry at any level. Since it contains a rich choice of nexer results and ideas, it is also of interest for researchers. Mathematical Reviews, Okt. 01 Author InformationProfessor Dr. phil. nat. Rolf Schneider, Albert-Ludwigs-Universität Freiburg i.Br. Professor Dr. phil. nat. Wolfgang Weil, Universität Karlsruhe Tab Content 6Author Website:Countries AvailableAll regions |