|
![]() |
|||
|
||||
OverviewWith the mapping of the partition function graphs of the n-vector magnetic model in the n to 0 limit as the self-avoiding walks, the conformational statistics of linear polymers was clearly understood in early seventies. Various models of disordered solids, percolation model in particular, were also established by late seventies. Subsequently, investigations on thestatistics of linear polymers or of self-avoiding walks in, say, porous medium or disordered lattices were started in early eighties. Inspite of the brilliant ideas forwarded and extensive studies made for the next two decades, the problem is not yet completely solved in its generality. This intriguing and important problem has remained since a topic of vigorous and active research.This book intends to offer the readers a first hand and extensive review of the various aspects of the problem, written by the experts in the respective fields. We hope, the contents of the book will provide a valuable guide for researchers in statistical physics of polymers and will surely induce further research and advances towards a complete understanding of the problem. Full Product DetailsAuthor: Bikas K. Chakrabarti (Saha Institute of Nuclear Physics, Kolkata, India)Publisher: Elsevier Science & Technology Imprint: Elsevier Science Ltd Dimensions: Width: 16.50cm , Height: 2.00cm , Length: 24.00cm Weight: 0.800kg ISBN: 9780444517098ISBN 10: 044451709 Pages: 368 Publication Date: 09 June 2005 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Out of Print Availability: In Print ![]() Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock. Table of ContentsPolymers in random media: an introduction, by B.K. Chakrabarti Directed polymers and randomness. by S.M. Bhattacharjee Self-avoiding walks in constrained and random geometries: series studies, by A.J. Guttmann Renormalization group approaches to polymers in disordered media, by V. Blavats'ka, C. von Ferber, R. Folk and Yu. Holovatch Linear and branched polymers on fractals, by D. Dhar and Y. Singh Self-avoiding walks on deterministic and random fractals: numerical results, by A. Ordemann, M. Porto and H.E. Roman Localization of polymers in random media: analogy with quantum particles in disorder, by Y.Y. Goldschmidt and Y. Shiferaw Geometric properties of optimal and most probable paths on randomly disordered lattices, by P. Bhattacharyya and A. Chatterjee Phenomenology of polymer single-chain diffusion in solution, by G.D.J. Phillies IndexReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |