Statistical Inference for Engineers and Data Scientists

Author:   Pierre Moulin (University of Illinois, Urbana-Champaign) ,  Venugopal V. Veeravalli (University of Illinois, Urbana-Champaign)
Publisher:   Cambridge University Press
ISBN:  

9781107185920


Pages:   418
Publication Date:   22 November 2018
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $160.40 Quantity:  
Add to Cart

Share |

Statistical Inference for Engineers and Data Scientists


Add your own review!

Overview

This book is a mathematically accessible and up-to-date introduction to the tools needed to address modern inference problems in engineering and data science, ideal for graduate students taking courses on statistical inference and detection and estimation, and an invaluable reference for researchers and professionals. With a wealth of illustrations and examples to explain the key features of the theory and to connect with real-world applications, additional material to explore more advanced concepts, and numerous end-of-chapter problems to test the reader's knowledge, this textbook is the 'go-to' guide for learning about the core principles of statistical inference and its application in engineering and data science. The password-protected solutions manual and the image gallery from the book are available online.

Full Product Details

Author:   Pierre Moulin (University of Illinois, Urbana-Champaign) ,  Venugopal V. Veeravalli (University of Illinois, Urbana-Champaign)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press
Dimensions:   Width: 17.70cm , Height: 2.30cm , Length: 25.80cm
Weight:   0.980kg
ISBN:  

9781107185920


ISBN 10:   1107185920
Pages:   418
Publication Date:   22 November 2018
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Introduction; Part I. Hypothesis Testing: 2. Binary hypothesis testing; 3. Multiple hypothesis testing; 4. Composite hypothesis testing; 5. Signal detection; 6. Convex statistical distances; 7. Performance bounds for hypothesis testing; 8. Large deviations and error exponents for hypothesis testing; 9. Sequential and quickest change detection; 10. Detection of random processes; Part II. Estimation: 11. Bayesian parameter estimation; 12. Minimum variance unbiased estimation; 13. Information inequality and Cramer–Rao lower bound; 14. Maximum likelihood estimation; 15. Signal estimation.

Reviews

'This book presents a rigorous and comprehensive coverage of the concepts underlying modern statistical inference, and provides a lucid exposition of the fundamental concepts. A distinguishing feature of the book is the large number of thoughtfully constructed examples, which go a long way towards aiding the reader in understanding and assimilating the concepts. As no particular domain expertise is assumed other than probability theory, the book should be widely accessible to a broad readership.' Kannan Ramchandran, University of California, Berkeley 'A wide-ranging, rigorous, yet accessible account of hypothesis testing and estimation, the pillars of statistical signal processing, communications, and data science at large.' Tsachy Weissman, STMicroelectronics Chair, Founding Director of the Stanford Compression Forum, Stanford University, California


'A wide-ranging, rigorous, yet accessible account of hypothesis testing and estimation, the pillars of statistical signal processing, communications, and data science at large.' Tsachy Weissman, STMicroelectronics Chair, Founding Director of the Stanford Compression Forum, Stanford University, California 'This book presents a rigorous and comprehensive coverage of the concepts underlying modern statistical inference, and provides a lucid exposition of the fundamental concepts. A distinguishing feature of the book is the large number of thoughtfully constructed examples, which go a long way towards aiding the reader in understanding and assimilating the concepts. As no particular domain expertise is assumed other than probability theory, the book should be widely accessible to a broad readership.' Kannan Ramchandran, University of California, Berkeley


Author Information

Pierre Moulin is a professor in the ECE Department at the University of Illinois, Urbana-Champaign. His research interests include statistical inference, machine learning, detection and estimation theory, information theory, statistical signal, image, and video processing, and information security. Moulin is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), and served as a Distinguished Lecturer for the IEEE Signal Processing Society. He has received two best paper awards from the IEEE Signal Processing Society and the US National Science Foundation CAREER Award. He was founding Editor-in-Chief of the IEEE Transactions on Information Security and Forensics. Venugopal V. Veeravalli is the Henry Magnuski Professor in the ECE Department at the University of Illinois, Urbana-Champaign. His research interests include statistical inference and machine learning, detection and estimation theory, and information theory, with applications to data science, wireless communications and sensor networks. Veeravalli is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), and served as a Distinguished Lecturer for the IEEE Signal Processing Society. Among the awards he has received are the IEEE Browder J. Thompson Best Paper Award, the National Science Foundation CAREER Award, the Presidential Early Career Award for Scientists and Engineers (PECASE), and the Wald Prize in Sequential Analysis.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List