Statistical Foundations, Reasoning and Inference: For Science and Data Science

Author:   Göran Kauermann ,  Helmut Küchenhoff ,  Christian Heumann
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2021
ISBN:  

9783030698294


Pages:   356
Publication Date:   02 October 2022
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $181.10 Quantity:  
Add to Cart

Share |

Statistical Foundations, Reasoning and Inference: For Science and Data Science


Add your own review!

Overview

This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.

Full Product Details

Author:   Göran Kauermann ,  Helmut Küchenhoff ,  Christian Heumann
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2021
Weight:   0.569kg
ISBN:  

9783030698294


ISBN 10:   3030698297
Pages:   356
Publication Date:   02 October 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Introduction.- Background in Probability.- Parametric Statistical Models.- Maximum Likelihood Inference.- Bayesian Statistics.- Statistical Decisions.- Regression.- Bootstrapping.- Model Selection and Model Averaging.- Multivariate and Extreme Value Distributions.- Missing and Deficient Data.- Experiments and Causality.

Reviews

Author Information

Göran Kauermann is a Professor of Statistics at the Department of Statistics and Chair of the Elite Master’s Program in Data Science at the LMU Munich, Germany. He is a recognized expert in applied statistics. He previously served as Editor-in-Chief of AStA Advances in Statistical Analysis, a journal of the German Statistical Society. Helmut Küchenhoff is a Professor of Statistics at the Department of Statistics and Head of the Statistical Consulting Unit (StaBLab) at the LMU Munich, Germany. He has extensive experience in working on practical statistical projects in science and industry. His teaching focuses on practical work, where students engage in practical projects with real-world problems. Christian Heumann is a Professor at the Department of Statistics, LMU Munich, Germany, where he teaches students in both the Bachelor’s and Master’s programs. His research interests include statistical modeling, computational statistics and methods for missing data, also in connection with causal inference. Recently, he has begun exploring statistical methods in natural language processing.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List