Statistical Analysis of Financial Data: With Examples In R

Author:   James Gentle (George Mason University)
Publisher:   Taylor & Francis Ltd
ISBN:  

9781138599499


Pages:   666
Publication Date:   11 March 2020
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $221.00 Quantity:  
Add to Cart

Share |

Statistical Analysis of Financial Data: With Examples In R


Add your own review!

Overview

Full Product Details

Author:   James Gentle (George Mason University)
Publisher:   Taylor & Francis Ltd
Imprint:   CRC Press
Weight:   1.140kg
ISBN:  

9781138599499


ISBN 10:   1138599492
Pages:   666
Publication Date:   11 March 2020
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

The book is very well written, and fills an important need for an up-to-date textbook about statistical techniques applied to finance. The book explains the theory behind the statistical techniques very well, with good detail. The mathematical notation is appealing and elegant. ~Jerzy Pawlowski, New York University Tandon School of Engineering I thoroughly enjoyed reading the first two chapters of the book. Often, the first couple of chapters of a book provide a boilerplate discussion of the characteristics of the data and R. Here, the first two chapters are very well developed, to the point that they provide a good general resource to readers approaching the analysis of financial data from several different perspectives. For example, students in statistics usually approach the entire analysis of time series having in mind the potential application to the analysis of financial data, but they know nothing about the characteristics of the data and the financial markets...Just like the previous chapters, I broadly enjoyed reading this chapter. Prof. Gentle explains the topics clearly and often uses simulations to convey the intuition. That's also the way I like to teach these concepts and I think it enhances understanding among economics and finance students. I also commend the way he discusses the lag and difference operators and how they are implemented in R. He devotes quite some space to them, and I believe that is good as many texts go over these concepts too quickly for many students. Likewise, the discussion of the AR(I)MA models is very detailed and clear. ~Jan Annaert, University of Antwerp and Antwerp Management School


The book is very well written, and fills an important need for an up-to-date textbook about statistical techniques applied to finance. The book explains the theory behind the statistical techniques very well, with good detail. The mathematical notation is appealing and elegant. ~Jerzy Pawlowski, New York University Tandon School of Engineering I thoroughly enjoyed reading the first two chapters of the book. Often, the first couple of chapters of a book provide a boilerplate discussion of the characteristics of the data and R. Here, the first two chapters are very well developed, to the point that they provide a good general resource to readers approaching the analysis of financial data from several different perspectives. For example, students in statistics usually approach the entire analysis of time series having in mind the potential application to the analysis of financial data, but they know nothing about the characteristics of the data and the financial markets...Just like the previous chapters, I broadly enjoyed reading this chapter. Prof. Gentle explains the topics clearly and often uses simulations to convey the intuition. That's also the way I like to teach these concepts and I think it enhances understanding among economics and finance students. I also commend the way he discusses the lag and difference operators and how they are implemented in R. He devotes quite some space to them, and I believe that is good as many texts go over these concepts too quickly for many students. Likewise, the discussion of the AR(I)MA models is very detailed and clear. ~Jan Annaert, University of Antwerp and Antwerp Management School The book is very well written, and fills an important need for an up-to-date textbook about statistical techniques applied to finance. The book explains the theory behind the statistical techniques very well, with good detail. The mathematical notation is appealing and elegant. ~Jerzy Pawlowski, New York University Tandon School of Engineering I thoroughly enjoyed reading the first two chapters of the book. Often, the first couple of chapters of a book provide a boilerplate discussion of the characteristics of the data and R. Here, the first two chapters are very well developed, to the point that they provide a good general resource to readers approaching the analysis of financial data from several different perspectives. For example, students in statistics usually approach the entire analysis of time series having in mind the potential application to the analysis of financial data, but they know nothing about the characteristics of the data and the financial markets...Just like the previous chapters, I broadly enjoyed reading this chapter. Prof. Gentle explains the topics clearly and often uses simulations to convey the intuition. That's also the way I like to teach these concepts and I think it enhances understanding among economics and finance students. I also commend the way he discusses the lag and difference operators and how they are implemented in R. He devotes quite some space to them, and I believe that is good as many texts go over these concepts too quickly for many students. Likewise, the discussion of the AR(I)MA models is very detailed and clear. ~Jan Annaert, University of Antwerp and Antwerp Management School Overall, I believe the book is perfect for readers with limited statistical and financial knowledge interested in having a first look both at financial data creation and at the statistical methods that could be used to analyse financial data; traders and financial analysts would suffer for the limited real-life examples, but they will benefit for the extensive and detailed introduction to the statistical tools for financial data analysis. - Massimiliano Caporin, Journal of the Royal Statistical Society, Vol 185, Issue 1, 2022


"""The book is very well written, and fills an important need for an up-to-date textbook about statistical techniques applied to finance. The book explains the theory behind the statistical techniques very well, with good detail. The mathematical notation is appealing and elegant."" ~Jerzy Pawlowski, New York University Tandon School of Engineering ""I thoroughly enjoyed reading the first two chapters of the book. Often, the first couple of chapters of a book provide a ""boilerplate"" discussion of the characteristics of the data and R. Here, the first two chapters are very well developed, to the point that they provide a good general resource to readers approaching the analysis of financial data from several different perspectives. For example, students in statistics usually approach the entire analysis of time series having in mind the potential application to the analysis of financial data, but they know nothing about the characteristics of the data and the financial markets...Just like the previous chapters, I broadly enjoyed reading this chapter. Prof. Gentle explains the topics clearly and often uses simulations to convey the intuition. That's also the way I like to teach these concepts and I think it enhances understanding among economics and finance students. I also commend the way he discusses the lag and difference operators and how they are implemented in R. He devotes quite some space to them, and I believe that is good as many texts go over these concepts too quickly for many students. Likewise, the discussion of the AR(I)MA models is very detailed and clear. ~Jan Annaert, University of Antwerp and Antwerp Management School ""The book is very well written, and fills an important need for an up-to-date textbook about statistical techniques applied to finance. The book explains the theory behind the statistical techniques very well, with good detail. The mathematical notation is appealing and elegant."" ~Jerzy Pawlowski, New York University Tandon School of Engineering ""I thoroughly enjoyed reading the first two chapters of the book. Often, the first couple of chapters of a book provide a ""boilerplate"" discussion of the characteristics of the data and R. Here, the first two chapters are very well developed, to the point that they provide a good general resource to readers approaching the analysis of financial data from several different perspectives. For example, students in statistics usually approach the entire analysis of time series having in mind the potential application to the analysis of financial data, but they know nothing about the characteristics of the data and the financial markets...Just like the previous chapters, I broadly enjoyed reading this chapter. Prof. Gentle explains the topics clearly and often uses simulations to convey the intuition. That's also the way I like to teach these concepts and I think it enhances understanding among economics and finance students. I also commend the way he discusses the lag and difference operators and how they are implemented in R. He devotes quite some space to them, and I believe that is good as many texts go over these concepts too quickly for many students. Likewise, the discussion of the AR(I)MA models is very detailed and clear. ~Jan Annaert, University of Antwerp and Antwerp Management School ""Overall, I believe the book is perfect for readers with limited statistical and financial knowledge interested in having a first look both at financial data creation and at the statistical methods that could be used to analyse financial data; traders and financial analysts would suffer for the limited real-life examples, but they will benefit for the extensive and detailed introduction to the statistical tools for financial data analysis."" - Massimiliano Caporin, Journal of the Royal Statistical Society, Vol 185, Issue 1, 2022"


Author Information

James E. Gentle is University Professor Emeritus at George Mason University. He is a Fellow of the American Statistical Association (ASA) and of the American Association for the Advancement of Science. He is author of Random Number Generation and Monte Carlo Methods and Matrix Algebra.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List