Statistical Analysis for High-Dimensional Data: The Abel Symposium 2014

Author:   Arnoldo Frigessi ,  Peter Bühlmann ,  Ingrid Glad ,  Mette Langaas
Publisher:   Springer International Publishing AG
Edition:   Softcover reprint of the original 1st ed. 2016
Volume:   11
ISBN:  

9783319800738


Pages:   306
Publication Date:   30 March 2018
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $448.77 Quantity:  
Add to Cart

Share |

Statistical Analysis for High-Dimensional Data: The Abel Symposium 2014


Add your own review!

Overview

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Full Product Details

Author:   Arnoldo Frigessi ,  Peter Bühlmann ,  Ingrid Glad ,  Mette Langaas
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   Softcover reprint of the original 1st ed. 2016
Volume:   11
Dimensions:   Width: 15.50cm , Height: 1.70cm , Length: 23.50cm
Weight:   0.492kg
ISBN:  

9783319800738


ISBN 10:   3319800736
Pages:   306
Publication Date:   30 March 2018
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Some Themes in High-Dimensional Statistics: A. Frigessi et al.- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al. 

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List