|
![]() |
|||
|
||||
OverviewThis thesis shows how a combination of analytic and numerical techniques, such as a time dependent and finite temperature Density Matrix Renormalization Group (DMRG) technique, can be used to obtain the physical properties of low dimensional quantum magnets with an unprecedented level of accuracy. A comparison between the theory and experiment then enables these systems to be used as quantum simulators; for example, to test various generic properties of low dimensional systems such as Luttinger liquid physics, the paradigm of one dimensional interacting quantum systems. Application of these techniques to a material made of weakly coupled ladders (BPCB) allowed the first quantitative test of Luttinger liquids. In addition, other physical quantities (magnetization, specific heat etc.), and more remarkably the spins-spin correlations – directly measurable in neutron scattering experiments – were in excellent agreement with the observed quantities. We thus now have tools to quantitatiivelyassess the dynamics for this class of quantum systems. Full Product DetailsAuthor: Pierre BouillotPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2013 ed. Dimensions: Width: 15.50cm , Height: 1.00cm , Length: 23.50cm Weight: 0.336kg ISBN: 9783642338076ISBN 10: 3642338070 Pages: 98 Publication Date: 14 December 2012 Audience: College/higher education , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationDr. Pierre Bouillot University of Geneva DPMC-MaNEP 1211 Geneva Switzerland e-mail: bouillot@bluewin.ch affiliation: University of Geneva, Switzerland Tab Content 6Author Website:Countries AvailableAll regions |