Stability Analysis of Uncertain Genetic Regulatory Newtworks

Author:   Jiewei Li ,  李劼伟
Publisher:   Open Dissertation Press
ISBN:  

9781361000007


Publication Date:   26 January 2017
Format:   Paperback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $129.36 Quantity:  
Add to Cart

Share |

Stability Analysis of Uncertain Genetic Regulatory Newtworks


Overview

This dissertation, Stability Analysis of Uncertain Genetic Regulatory Newtworks by Jiewei, Li, 李劼伟, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Genetic regulatory network (GRN) is a fundamental research area in systems biology. This thesis studies the stability of a class of GRN models. First, a condition is proposed to ensure the robust stability of uncertain GRNs with SUM regulatory functions. It is assumed that the uncertainties are in the form of a parameter vector that determines the coefficients of the model via given functions. Then, the global asymptotic stability conditions of uncertain GRNs affected by disturbances and time delays are further explored. The conditions are obtained by solving a convex optimization problem by exploring the sum of squares (SOS) of matrix polynomials and by introducing polynomially parameter-dependent Lyapunov-Krasovskii functionals (LKFs). Moreover, based on the uncertain GRNs with guaranteed disturbance attenuation, it is shown that estimates of the sought stable uncertainty sets can be obtained through a recursive strategy based on parameter-dependent Lyapunov functions and the SOS. Second, the stability conditions of GRNs described by piecewise models are considered. Depending on whether the state partitions and mode transitions are known or unknown as priori, the proposed networks are divided into two categories, i.e., switched GRNs and hybrid GRNs. It is shown that, by using common polynomial Lyapunov functions and piecewise polynomial Lyapunov functions, two conditions are established to ensure the global asymptotic stability for switched and hybrid GRNs, respectively. In addition, it is shown that, by using the SOS techniques, stability conditions in the form of LMIs for both models can be obtained. Third, the multi-stability of uncertain GRNs with multivariable regulation functions is investigated. It is shown that, by using the Lyapunov functional method and LMI technology, a criterion is established to ensure the robust asymptotical stability of the uncertain GRNs, and such condition can be extended to deal with the multi-stability problem. Moreover, it is shown that by using the square matrix representation (SMR) and by adopting polynomially parameter-dependent Lyapunov functions, a condition in the form of LMIs for robust stability for all admissible uncertainties can be obtained. Examples with synthetic and real biological models are presented in each section to illustrate the applicability and effectiveness of the theoretical results. DOI: 10.5353/th_b5089978 Subjects: Gene regulatory networks - Mathematical modelsStability

Full Product Details

Author:   Jiewei Li ,  李劼伟
Publisher:   Open Dissertation Press
Imprint:   Open Dissertation Press
Dimensions:   Width: 21.60cm , Height: 0.80cm , Length: 27.90cm
Weight:   0.336kg
ISBN:  

9781361000007


ISBN 10:   1361000007
Publication Date:   26 January 2017
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List