Sperm Fucosyltransferase-5 Mediates the Sperm-Oviductal Epithelial Cell Interaction to Protect Human Sperm from Oxidative Damage

Author:   Wenxin Huang ,  黃聞馨
Publisher:   Open Dissertation Press
ISBN:  

9781361335277


Publication Date:   26 January 2017
Format:   Paperback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $129.36 Quantity:  
Add to Cart

Share |

Sperm Fucosyltransferase-5 Mediates the Sperm-Oviductal Epithelial Cell Interaction to Protect Human Sperm from Oxidative Damage


Add your own review!

Overview

This dissertation, Sperm Fucosyltransferase-5 Mediates the Sperm-oviductal Epithelial Cell Interaction to Protect Human Sperm From Oxidative Damage by Wenxin, Huang, 黃聞馨, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Oxidative damage by reactive oxygen species (ROS) is a major cause of sperm dysfunction. Excessive ROS generation reduces fertilization and enhances DNA damage of spermatozoa. In mammals, including humans, oviduct functions as a sperm reservoir which is created by the binding of spermatozoa to the epithelial lining in the oviduct. Interaction between sperm and oviductal epithelial cells improves the fertilizing ability of and reduces chromatin damage in spermatozoa. However, the mechanism(s) by which spermatozoa-oviduct interaction producing these beneficial effects is unknown. One possibility is that oviduct protects spermatozoa from oxidative stress. The hypothesis of this project was that oviductal cell membrane proteins interact with spermatozoa to protect them from oxidative damage. Due to the limited availability of human oviductal tissue for research, an immortalized human oviductal epithelial cell line, OE-E6/E7, was used as a study model. The first objective examined the effect of OE-E6/E7 membrane proteins on human spermatozoa. The extracted OE-E6/E7 membrane proteins bound to sperm head and preferentially to uncapacitated sperm. Pretreatment with OE-E6/E7 membrane proteins significantly suppressed ROS-induced adverse effects in sperm motility, membrane integrity, DNA integrity, and intracellular ROS level. OE-E6/E7 membrane proteins also increased the endogenous enzyme activities of sperm superoxide dismutase (SOD) and glutathione peroxidase (GPx). Sperm fucosyltransferase-5 (sFUT5) is a membrane carbohydrate-binding protein on human sperm. The second objective investigated the involvement of sFUT5 in sperm-oviduct interaction. Purified sFUT5 bound to OE-E6/E7 cells and anti-FUT5 antibody inhibited this interaction. Pre-absorption of OE-E6/E7 membrane proteins with purified sFUT5 or blocking of sFUT5 on sperm with anti-FUT5 antibody significantly inhibited the protective effects of OE-E6/E7 membrane proteins against ROS-induced damages in spermatozoa. Asialofetuin, a reported sFUT5 substrate, can partly mimic the protective effect of OE-E6/E7 membrane proteins. Sperm processing in assisted reproductive technology (ART) treatment, including centrifugation and cryopreservation, has shown to induce ROS production and oxidative damage in sperm. The third objective investigated the possible use of OE-E6/E7 membrane proteins or asialofetuin as an antioxidant supplement during centrifugation and cryopreservation. No adverse effect on sperm functions was detected by centrifugation using our centrifugation protocols. OE-E6/E7 membrane proteins or asialofetuin pretreatment suppressed the cryopreservation-induced damage on sperm in terms of motility and DNA fragmentation.The fourth objective aimed to identify the sFUT5-interacting proteins from OE-E6/E7 membrane extracts. By using immuno-affinity chromatography and mass spectrometry analysis, cell adhesion molecule 4 (CADM4) was identified as a potential sFUT5-interacting protein. This result was further supported by co-immunoprecipitation, immunofluorescent staining and immunohistochemistry. CADM4 expression level was shown to be higher at follicular phase when compared to luteal phase of the menstrual cycle. In conclusion, this thesis demonstrated that oviductal epithelial cell membrane proteins bind to the human spermatozoa and protect them from ROS-indu

Full Product Details

Author:   Wenxin Huang ,  黃聞馨
Publisher:   Open Dissertation Press
Imprint:   Open Dissertation Press
Dimensions:   Width: 21.60cm , Height: 1.20cm , Length: 27.90cm
Weight:   0.526kg
ISBN:  

9781361335277


ISBN 10:   1361335270
Publication Date:   26 January 2017
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List