|
![]() |
|||
|
||||
OverviewThis text presents the modern unified theory of spectral methods and their implementation in the numerical analysis of partial differential equations occurring in fluid dynamical problems of transition, turbulence and aerodynamics. It provides the engineer with the tools and guidance necessary to apply the methods successfully, and it furnishes the mathematician with a theoretical background to the subject. All of the essential components of spectral algorithms currently employed for large-scale computations in fluid mechanics are described in detail. Some specific applications are linear stability, boundary layer calculations, direct simulations of transition and turbulence, and compressible Euler equations. The authors also present complete algorithms for Poisson's equation, linear hyperbolic systems, the advection diffusion equation, isotropic turbulence, and boundary layer transition. Some recent developments stressed in the book are iterative techniques (including the spectral multigrid method), spectral shock-fitting algorithms, and spectral multidomain methods. The book addresses graduate students and researchers in fluid dynamics and applied mathematics as well as engineers working on problems of practical importance. For this edition the authors have added a new section on the spectral domain decomposition method, and a supplementary bibliography on recent developments. Full Product DetailsAuthor: Claudio Canuto , M.Yousuff Hussaini , Alfio Quarteroni , Thomas A., Jr. ZangPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 1st ed. 1988. Corr. 2nd printing Dimensions: Width: 15.50cm , Height: 3.00cm , Length: 23.50cm Weight: 0.873kg ISBN: 9783540522058ISBN 10: 3540522050 Pages: 568 Publication Date: 15 March 1991 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents1. Introduction.- 1.1. Historical Background.- 1.2. Some Examples of Spectral Methods.- 1.3. The Equations of Fluid Dynamics.- 1.4. Spectral Accuracy for a Two-Dimensional Fluid Calculation.- 1.5. Three-Dimensional Applications in Fluids.- 2. Spectral Approximation.- 2.1. The Fourier System.- 2.2. Orthogonal Polynomials in ( — 1, 1).- 2.3. Legendre Polynomials.- 2.4. Chebyshev Polynomials.- 2.5. Generalizations.- 3. Fundamentals of Spectral Methods for PDEs.- 3.1. Spectral Projection of the Burgers Equation.- 3.2. Convolution Sums.- 3.3. Boundary Conditions.- 3.4. Coordinate Singularities.- 3.5. Two-Dimensional Mapping.- 4. Temporal Discretization.- 4.1. Introduction.- 4.2. The Eigenvalues of Basic Spectral Operators.- 4.3. Some Standard Schemes.- 4.4. Special Purpose Schemes.- 4.5. Conservation Forms.- 4.6. Aliasing.- 5. Solution Techniques for Implicit Spectral Equations.- 5.1. Direct Methods.- 5.2. Fundamentals of Iterative Methods.- 5.3. Conventional Iterative Methods.- 5.4. Multidimensional Preconditioning.- 5.5. Spectral Multigrid Methods.- 5.6. A Semi-Implicit Method for the Navier—Stokes Equations.- 6. Simple Incompressible Flows.- 6.1. Burgers Equation.- 6.2. Shear Flow Past a Circle.- 6.3. Boundary-Layer Flows.- 6.4. Linear Stability.- 7. Some Algorithms for Unsteady Navier—Stokes Equations.- 7.1. Introduction.- 7.2. Homogeneous Flows.- 7.3. Inhomogeneous Flows.- 7.4. Flows with Multiple Inhomogeneous Directions.- 7.5. Mixed Spectral/Finite-Difference Methods.- 8. Compressible Flow.- 8.1. Introduction.- 8.2. Boundary Conditions for Hyperbolic Problems.- 8.3. Basic Results for Scalar Nonsmooth Problems.- 8.4. Homogeneous Turbulence.- 8.5. Shock-Capturing.- 8.6. Shock-Fitting.- 8.7. Reacting Flows.- 9. Global Approximation Results.- 9.1. FourierApproximation.- 9.2. Sturm—Liouville Expansions.- 9.3. Discrete Norms.- 9.4. Legendre Approximations.- 9.5. Chebyshev Approximations.- 9.6. Other Polynomial Approximations.- 9.7. Approximation Results in Several Dimensions.- 10. Theory of Stability and Convergence for Spectral Methods.- 10.1. The Three Examples Revisited.- 10.2. Towards a General Theory.- 10.3. General Formulation of Spectral Approximations to Linear Steady Problems.- 10.4. Galerkin, Collocation and Tau Methods.- 10.5. General Formulation of Spectral Approximations to Linear Evolution Equations.- 10.6. The Error Equation.- 11. Steady, Smooth Problems.- 11.1. The Poisson Equation.- 11.2. Advection-Diffusion Equation.- 11.3. Navier—Stokes Equations.- 11.4. The Eigenvalues of Some Spectral Operators.- 12. Transient, Smooth Problems.- 12.1. Linear Hyperbolic Equations.- 12.2. Heat Equation.- 12.3. Advection-Diffusion Equation.- 13. Domain Decomposition Methods.- 13.1. Introduction.- 13.2. Patching Methods.- 13.3. Variational Methods.- 13.4. The Alternating Schwarz Method.- 13.5. Mathematical Aspects of Domain Decomposition Methods.- 13.6. Some Stability and Convergence Results.- Appendices.- A. Basic Mathematical Concepts.- B. Fast Fourier Transforms.- C. Jacobi—Gauss—Lobatto Roots.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |