|
![]() |
|||
|
||||
OverviewThis book concerns the elastic stability of thin-walled structures — one of the most challenging problems facing structural engineers because of its high degree of nonlinearity — and introduces the innovative approach of using spectral analysis of the shapes and the stiffness to gain insights into the nonlinear deformations. The methodology greatly facilitates correlating the shape changes with the stiffness changes. Professor Doyle also develops specific computer procedures that complement finite element methods so that the ideas and methods are applicable to general structural problems. Basic validity of the procedures is established using key archetypal problems from buckling/post-buckling of columns, arches, curved plates, and cylindrical shells, all worked out in significant detail. The book is ideal for a wide variety of structural engineers, particularly those in aerospace and civil fields. Researchers in computational mechanics also find a rich source of new ideas for post-processing data from nonlinear analyses. Full Product DetailsAuthor: James F. DoylePublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2020 Weight: 0.876kg ISBN: 9783030594930ISBN 10: 3030594939 Pages: 409 Publication Date: 27 November 2020 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Overview of Shapes and Stiffness.- Shapes with Coupled Deformations.- Nonlinear Elastic Shapes.- Buckling Shapes.- Studies of Post-buckled Shapes.- Index.ReviewsAuthor InformationJames F. Doyle is a professor of Aeronautics and Astronautics at Purdue University. He received a Dip. Eng, from DIT, Ireland; M.Sc. from University of Saskatchewan., Canada; and PhD, from U. Illinois, USA. His main areas of research is experimental and computational mechanics, Wave propagation, and nonlinear structural dynamics; special emphasis is placed on solving inverse problems. He has published a number of book on these topics. Professor Doyle is a dedicated teacher and pedagogical innovator. He is a recipient of the Frocht Award for Teaching and the Hetenyi Award for Research, both from the Society for Experimental Mechanics. He is a Fellow of the Society for Experimental Mechanics. Tab Content 6Author Website:Countries AvailableAll regions |