Spectra of Random and Almost-periodic Operators

Author:   Leonid Pastur ,  Alexander Figotin
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Volume:   Part 297
ISBN:  

9783540506225


Pages:   595
Publication Date:   16 December 1991
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $419.76 Quantity:  
Add to Cart

Share |

Spectra of Random and Almost-periodic Operators


Add your own review!

Overview

The study of the spectra and related characteristics of random and almost periodic operators of various types (Schrodinger, continuous, discrete and more general) is a lively field of research lying at the intersection of mathematical physics, spectral theory of operators and probability theory. A widespread interest in the domain and a considerable amount of mathematical activity have led to many new results and viewpoints yielding insight even into traditional questions. This book by two of the leading researchers is a systematic treatment of the fundamental problems and the large body of mathematical results known. The book also provides a number of exercises illustrating these results to guide the reader towards improvements and generalizations.

Full Product Details

Author:   Leonid Pastur ,  Alexander Figotin
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Volume:   Part 297
Weight:   1.010kg
ISBN:  

9783540506225


ISBN 10:   3540506225
Pages:   595
Publication Date:   16 December 1991
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

I. Metrically Transitive Operators.- 1 Basic Definitions and Examples.- 1.A Random Variables, Functions and Fields.- 1.B Random Vectors and Operators.- l.C Metrically Transitive Random Fields.- l.D Metrically Transitive Operators.- 2 Simple Spectral Properties of Metrically Transitive Operators.- 2.A Deficiency Indices.- 2.B Nonrandomnessofthe Spectrum and of its Components.- 2.C Nonrandomness of Multiplicities.- Problems.- II. Asymptotic Properties of Metrically Transitive Matrix and Differential Operators.- 3 Review of Basic Results.- 4 Matrix Operators on ?2 (Zd).- 4.A Essential Self-Adjointness.- 4.B Existence of the Integrated Density of States and Other Ergodic Properties.- 4.C Simple Properties of the Integrated Density of States and of the Spectra of Metrically Transitive Matrix Operators.- 4.D Location of the Spectrum.- 5 Schrodinger Operators and Elliptic Differential Operators on L2(Rd).- 5.A Criteria for Essential Self-Adjointness.- 5.B Ergodic Properties.- 5.C Some Properties of the Integrated Density of States.- 5.D Location of the Spectrum of a Metrically Transitive Schrodinger Operator.- Problems.- III. Integrated Density of States in One-Dimensional Problems of Second Order.- 6 The Oscillation Theorem and the Integrated Density of States.- 6. A The Phase and the Existence of the Integrated Density of States.- 6.B Simplest Asymptotics of the Integrated Density of States at the Edges of the Spectrum.- 6.C Schrodinger Operator with Markov Potential.- 6.D The Brownian Motion Model.- 6.E Jacobi Matrices with Independent and Markov Coefficients.- 6.F Smoothness of N (?); Special Energies.- 7 Examples of Calculation of the Integrated Density of States.- 7.A The Kronig-Penny Stochastic Model.- 7.B Random Jacobi Matrices.- Problems.- IV. Asymptotic Behavior of the Integrated Density of States at Spectral Boundaries in Multidimensional Problems.- 8 Stable Boundaries.- 9 Fluctuation Boundaries: General Discussion and Classical Asymptotics.- 9.A Introduction and Heuristic Discussion.- 9.B Simplest Bounds. Gaussian and Negative Poisson Potentials.- 9.C Generalized Poisson Potential.- 10 Fluctuation Boundaries: Quantum Asymptotics.- 10.A The Lifshitz Exponent.- 10.B Generalized Poisson Potential with a Nonnegative, Rapidly Decreasing Function.- 10.C Smoothed Square of a Gaussian Random Field.- Problems.- V. Lyapunov Exponents and the Spectrum in One Dimension.- 11 Existence and Properties of Lyapunov Exponents.- 11.A The Multiplicative Ergodic Theorem and the Existence of Lyapunov Exponents.- 11.B The Lyapunov Exponent and the Integrated Density of States.- 11.C Simplest Asymptotic Formulas and Estimates for Lyapunov Exponents.- 12 Lyapunov Exponents and the Absolutely Continuous Spectrum.- 12.A Basic Facts About the Spectrum of One-Dimensional Operators of the Second Order.- 12.B Lyapunov Exponents and the Absolutely Continuous Spectrum.- 12.C Multiplicity of the Spectrum.- 12.D Deterministic Potentials.- 12.E Some Inverse Problems.- 13 Lyapunov Exponents and the Point Spectrum.- 13.A Heuristic Discussion.- 13.B Conditions for Positive Lyapunov Exponents to Imply a Pure Point Spectrum.- Problems.- VI. Random Operators.- 14 The Lyapunov Exponent of Random Operators in One Dimension.- 14.A Positiveness of the Lyapunov Exponent.- 14.B Asymptotic Formulas for the Lyapunov Exponent.- 15 The Point Spectrum of Random Operators.- 15.A The Pure Point Spectrum in One Dimension.- 15.B Other One-Dimensional Results.- 15.C The Point Spectrum in Multidimensional Problems.- Problems.- VII. Almost-Periodic Operators.- 16 Smooth Quasi-Periodic Potentials.- 16.A The Integrated Density of States and the Gap Labeling Theorem.- 16.B Absolutely Continuous Spectrum.- 16.C Lower Bounds of Solutions and Absence of a Point Spectrum.- 16.D Lower Bounds for the Lyapunov Exponent and Absence of an Absolutely Continuous Spectrum in the Discrete Case.- 16.E Point Spectrum of Almost-Periodic Operators.- 16.F The Almost-Mathieu Operator.- 17 Limit-Periodic Potentials.- 17.A Basic Results.- 17.B Spectral Data for Periodic Potentials of Increasing Period.- 17.C Proof of the Main Theorems.- 18 Unbounded Quasiperiodic Potentials.- 18.A General Results and the Integrated Density of States.- 18.B The Case of Strongly Incommensurate Frequencies.- 18.C The One-Dimensional Case.- 18.D The Schrodinger Operator with a Nonlocal Quasiperiodic Potential.- Problems.- Appendix A: Nevanlinna Functions.- Appendix B: Distribution of Eigenvalues of Large Random Matrices.- List of Symbols.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List