|
![]() |
|||
|
||||
OverviewThis unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book. Full Product DetailsAuthor: Hong ChengPublisher: Springer London Ltd Imprint: Springer London Ltd Edition: Softcover reprint of the original 1st ed. 2015 Dimensions: Width: 15.50cm , Height: 1.40cm , Length: 23.50cm Weight: 4.161kg ISBN: 9781447172512ISBN 10: 1447172515 Pages: 257 Publication Date: 09 October 2016 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPart I: Introduction and Fundamentals.- Introduction.- The Fundamentals of Compressed Sensing.- Part II: Sparse Representation, Modeling and Learning.- Sparse Recovery Approaches.- Robust Sparse Representation, Modeling and Learning.- Efficient Sparse Representation and Modeling.- Part III: Visual Recognition Applications.- Feature Representation and Learning.- Sparsity Induced Similarity.- Sparse Representation and Learning Based Classifiers.- Part IV: Advanced Topics.- Beyond Sparsity.- Appendix A: Mathematics.- Appendix B: Computer Programming Resources for Sparse Recovery Approaches.- Appendix C: The source Code of Sparsity Induced Similarity.- Appendix D: Derivations.ReviewsAuthor InformationDr. Hong Cheng is Professor in the School of Automation Engineering, and Deputy Executive Director of the Center for Robotics at the University of Electronic Science and Technology of China. His other publications include the Springer book Autonomous Intelligent Vehicles. Tab Content 6Author Website:Countries AvailableAll regions |