|
![]() |
|||
|
||||
OverviewThe book is devoted to the study of approximate solutions of fixed point problems in the presence of computational errors. It begins with a study of approximate solutions of star-shaped feasibility problems in the presence of perturbations. The goal is to show the convergence of algorithms, which are known as important tools for solving convex feasibility problems and common fixed point problems.The text also presents studies of algorithms based on unions of nonexpansive maps, inconsistent convex feasibility problems, and split common fixed point problems. A number of algorithms are considered for solving convex feasibility problems and common fixed point problems. The book will be of interest for researchers and engineers working in optimization, numerical analysis, and fixed point theory. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of the influence of computational errorsfor several important algorithms used for nonconvex feasibility problems. Full Product DetailsAuthor: Alexander J. ZaslavskiPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 2024 ed. Volume: 210 ISBN: 9783031508783ISBN 10: 3031508785 Pages: 386 Publication Date: 20 March 2024 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1 - Introduction.- 2 - Iterative methods in a Hilbert space.- 3 - The Cimmino algorithm in a Hilbert space.- 4 - Dynamic string-averaging methods in Hilbert spaces.- 5 - Methods with remotest set control in a Hilbert space.- 6 - Algorithms based on unions of nonexpansive maps.- 7 - Inconsistent convex feasibility problems.- 8 - Split common fixed point problems.ReviewsAuthor InformationAlexander J. Zaslavski, Department of Mathematics, Technion – Israel Institute of Technology, Haifa, Israel. Tab Content 6Author Website:Countries AvailableAll regions |