|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Klaus D. SattlerPublisher: Taylor & Francis Ltd Imprint: CRC Press Weight: 1.827kg ISBN: 9780367782078ISBN 10: 0367782073 Pages: 684 Publication Date: 31 March 2021 Audience: College/higher education , General/trade , Tertiary & Higher Education , General Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsI. Arrays, Hybrids, Core-Shell Formation and optical properties of silicon nanowire arrays. Inverted Silicon Nanopencil Arrays. Single Crystal Silicon Nanopore and Arrays. 3D Si Quantum Dot Array. Systems of Silicon Nanocrystals and their Peculiarities. Silicon/Polymer Composite Nanopost Arrays. Vertical Silicon Nanostructures. Silicon Nanowire and Nanohole Arrays. Silicon-Based Core-Shell Nanostructures. II. Functional Materials. Porous Silicon as Template for Magnetic Nanostructures. Heat and Mass Transfer in Silicon-Based Nanostructures. Electrodeposited Silicon from Ionic Liquids. Sonosensitizing Properties of Silicon Nanoparticles. Silicon Metamaterials with Exotic Mid-Infrared Radiative Properties. Antireflective Silicon Nanostructures. Black Silicon Antireflection Nanostructures. Silicon Nanowires in Biomedicine. Silicon Dots in Radiotherapy. III. Industrial Nanosilicon. Silicon-based Anode Materials for Lithium Ion Batteries. Silicon Nanopowders from Plasma for Li-ion Batteries. Nanophotonics Silicon Solar Cells. Photovoltaic Structures Based on Porous Silicon. Silicon Nano-Stalagmite for Hybrid Solar Cells. Bottom-up Nanostructured Silicon for Thermoelectrics. Nanosilicon and Thermoelectricity. Nanostructured Silicon for Thermoelectrics. Nanoscale Silicon in Photonics and Photovoltaics. Silicon/Carbon Yolk-Like Nanostructure for Energy Storage. Nanosilicon for Quantum Information.ReviewsAuthor InformationKlaus D. Sattler pursued his undergraduate and master’s courses at the University of Karlsruhe in Germany. He received his PhD under the guidance of Professors G. Busch and H.C. Siegmann at the Swiss Federal Institute of Technology (ETH) in Zurich, where he was among the first to study spin-polarized photoelectron emission. In 1976, he began a group for atomic cluster research at the University of Konstanz in Germany, where he built the first source for atomic clusters and led his team to pioneering discoveries such as ""magic numbers"" and ""Coulomb explosion."" He was at the University of California, Berkeley, for three years as a Heisenberg fellow, where he initiated the first studies of atomic clusters on surfaces with a scanning tunneling microscope. Dr. Sattler accepted a position as professor of physics at the University of Hawaii, Honolulu, in 1988. There, he initiated a research group for nanophysics, which, using scanning probe microscopy, obtained the first atomic-scale images of carbon nanotubes directly confirming the graphene network. In 1994, his group produced the first carbon nanocones. He has also studied the formation of polycyclic aromatic hydrocarbons (PAH) and nanoparticles in hydrocarbon flames in collaboration with ETH Zurich. Other research has involved the nanopatterning of nanoparticle films, charge density waves on rotated graphene sheets, band gap studies of quantum dots, and graphene folds. His current work focuses on novel nanomaterials and solar photocatalysis with nanoparticles for the purification of water. He is the editor of the sister reference, Carbon Nanomaterials Sourcebook (CRC Press, 2016), Fundamentals of Picoscience (CRC Press, 2014), and the seven-volume Handbook of Nanophysics (CRC Press, 2011). Among his many other accomplishments, Dr. Sattler was awarded the prestigious Walter Schottky Prize from the German Physical Society in 1983. At the University of Hawaii, he teaches courses in general physics, solid state physics, and quantum mechanics. Tab Content 6Author Website:Countries AvailableAll regions |