|
![]() |
|||
|
||||
Overview1.1 The Role of Silicon as a Semiconductor Silicon is unchallenged as a semiconductor base material in our present electronics indu stry. The reasons why it qualifies so strongly for this particular purpose are manyfold. The attractive combination of physical (electrical) properties of silicon and the unique properties of its native oxide layer have been the original factors for its breathtaking evolution in device technology. The majority of reasons, however, for its present status are correlated with industrial prosessing in terms of charge units ( economy), reliability (reproducibility), and flexibility, but also its availability. The latter point, in particular, plays an important role in the different long-term projects on the terrestrial application of solar cells. Practically inexhaustive resources of silicon dioxide form a sound basis even for the most pretentious programs on future alternatives to relieve the present situation in electrical power generation by photovol taics. Assuming a maximum percentage of 10% to be replaced by the year 2000 would roughly mean a cumulative annual production of 2 million metric tons of crude silicon (based on present solar cell standards)!). To illustrate the orders of magnitude that have to be discussed in pertinent programs: Today, the industrial silicon capacity of non-communistic countries (including ferrosili con and other alloys by their relative Si-content) amounts to some 2 million tons per year. Full Product DetailsAuthor: J. GrabmaierPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1981 Volume: 5 Dimensions: Width: 17.00cm , Height: 1.10cm , Length: 24.40cm Weight: 0.375kg ISBN: 9783642681776ISBN 10: 3642681778 Pages: 202 Publication Date: 29 December 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsFloat-Zone Grown Silicon.- “Solar” Silicon.- The Capillary Action Shaping Technique and Its Applications.- Crystal Growth of Silicon Ribbons for Terrestrial Solar Cells by the EFG Method.- Author Index Volumes 1–5.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |