Set Theory and Logic

Author:   Robert R. Stoll
Publisher:   Dover Publications Inc.
Edition:   New edition
ISBN:  

9780486638294


Pages:   512
Publication Date:   28 March 2003
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $52.99 Quantity:  
Add to Cart

Share |

Set Theory and Logic


Overview

Set Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in set logic. Contents include: Sets and Relations - Cantor's concept of a set, etc.Natural Number Sequence - Zorn's Lemma, etc.Extension of Natural Numbers to Real NumbersLogic - the Statement and Predicate Calculus, etc.Informal Axiomatic MathematicsBoolean AlgebraInformal Axiomatic Set TheorySeveral Algebraic Theories - Rings, Integral Domains, Fields, etc.First-Order Theories - Metamathematics, etc.Symbolic logic does not figure significantly until the final chapter. The main theme of the book is mathematics as a system seen through the elaboration of real numbers; set theory and logic are seen s efficient tools in constructing axioms necessary to the system. Mathematics students at the undergraduate level, and those who seek a rigorous but not unnecessarily technical introduction to mathematical concepts, will welcome the return to print of this most lucid work. """"Professor Stoll . . . has given us one of the best introductory texts we have seen."""" - Cosmos. """"In the reviewer's opinion, this is an excellent book, and in addition to its use as a textbook (it contains a wealth of exercises and examples) can be recommended to all who wish an introduction to mathematical logic less technical than standard treatises (to which it can also serve as preliminary reading)."""" - Mathematical Reviews.

Full Product Details

Author:   Robert R. Stoll
Publisher:   Dover Publications Inc.
Imprint:   Dover Publications Inc.
Edition:   New edition
Dimensions:   Width: 14.20cm , Height: 2.70cm , Length: 20.80cm
Weight:   0.615kg
ISBN:  

9780486638294


ISBN 10:   0486638294
Pages:   512
Publication Date:   28 March 2003
Audience:   College/higher education ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

"Chapter 1 SETS AND RELATIONS 1. Cantor's Concept of a Set 2. The Basis of Intuitive Set Theory 3. Inclusion 4. Operations for Sets 5. The Algebra of Sets 6. Relations 7. Equivalence Relations 8. Functions 9. Composition and Inversion for Functions 10. Operations for Collections of Sets 11. Ordering Relations Chapter 2 THE NATURAL NUMBER SEQUENCE AND ITS GENERALIZATIONS 1. The Natural Number Sequence 2. Proof and Definition by Induction 3. Cardinal Numbers 4. Countable Sets 5. Cardinal Arithmetic 6. Order Types 7. Well-ordered Sets and Ordinal Numbers 8. ""The Axiom of Choice, the Well-ordering Theorem, and Zorn's Lemma"" 9. Further Properties of Cardinal Numbers 10. Some Theorems Equivalent to the Axiom of Choice 11. The Paradoxes of Intuitive Set Theory Chapter 3 THE EXTENSION OF THE NATURAL NUMBERS TO THE REAL NUMBERS 1. The System of Natural Numbers 2. Differences 3. Integers 4. Rational Numbers 5. Cauchy Sequences of Rational Numbers 6. Real Numbers 7. Further Properties of the Real Number System Chapter 4 LOGIC 1. The Statement Calculus. Sentential Connectives 2. The Statement Calculus. Truth Tables 3. The Statement Calculus. Validity 4. The Statement Calculus. Consequence 5. The Statement Calculus. Applications 6. The Predicate Calculus. Symbolizing Everyday Language 7. The Predicate Calculus. A Formulation 8. The Predicate Calculus. Validity 9. The Predicate Calculus. Consequence Chapter 5 INFORMAL AXIOMATIC MATHEMATICS 1. The Concept of an Axiomatic Theory 2. Informal Theories 3. Definitions of Axiomatic Theories by Set-theoretical Predicates 4. Further Features of Informal Theories Chapter 6 BOOLEAN ALGEBRAS 1. A Definition of a Boolean Algebra 2. Some Basic Properties of a Boolean Algebra 3. Another Formulation of the Theory 4. Congruence Relations for a Boolean Algebra 5. Representations of Boolean Algebras 6. Statement Calculi as Boolean Algebras 7. Free Boolean Algebras 8. Applications of the Theory of Boolean Algebras to Statement Calculi 9. Further Interconnections between Boolean Algebras and Statement Calculi Chapter 7 INFORMAL AXIOMATIC SET THEORY 1. The Axioms of Extension and Set Formation 2. The Axiom of Pairing 3. The Axioms of Union and Power Set 4. The Axiom of Infinity 5. The Axiom of Choice 6. The Axiom Schemas of Replacement and Restriction 7. Ordinal Numbers 8. Ordinal Arithmetic 9. Cardinal Numbers and Their Arithmetic 10. The von Neumann-Bernays-Godel Theory of Sets Chapter 8 SEVERAL ALGEBRAIC THEORIES 1. Features of Algebraic Theories 2. Definition of a Semigroup 3. Definition of a Group 4. Subgroups 5. Coset Decompositions and Congruence Relations for Groups 6. ""Rings, Integral Domains, and Fields"" 7. Subrings and Difference Rings 8. A Characterization of the System of Integers 9. A Characterization of the System of Rational Numbers 10. A Characterization of the Real Number System Chapter 9 FIRST-ORDER THEORIES 1. Formal Axiomatic Theories 2. The Statement Calculus as a Formal Axiomatic Theory 3. Predicate Calculi of First Order as Formal Axiomatic Theories 4. First-order Axiomatic Theories 5. Metamathematics 6. Consistency and Satisfiability of Sets of Formulas 7. ""Consistency, Completeness, and Categoricity of First-order Theories"" 8. Turing Machines and Recursive Functions 9. Some Undecidable and Some Decidable Theories 10. Godel's Theorems 11. Some Further Remarks about Set Theory References Symbols and Notation Author Index Subject Index"

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List