Semiconductor Alloys: Physics and Materials Engineering

Author:   An-Ben Chen ,  Arden Sher
Publisher:   Springer Science+Business Media
Edition:   1995 ed.
ISBN:  

9780306450525


Pages:   364
Publication Date:   30 November 1995
Format:   Hardback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $261.36 Quantity:  
Add to Cart

Share |

Semiconductor Alloys: Physics and Materials Engineering


Add your own review!

Overview

In the first comprehensive treatment of these technologically important materials, the authors provide theories linking the properties of semiconductor alloys to their constituent compounds. Topics include crystal structures, bonding, elastic properties, phase diagrams, band structures, transport, ab-initio theories, and semi-empirical theories. Each chapter includes extensive tables and figures as well as problem sets.

Full Product Details

Author:   An-Ben Chen ,  Arden Sher
Publisher:   Springer Science+Business Media
Imprint:   Kluwer Academic/Plenum Publishers
Edition:   1995 ed.
Weight:   0.850kg
ISBN:  

9780306450525


ISBN 10:   0306450526
Pages:   364
Publication Date:   30 November 1995
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

1. Crystal Structures.- 1.1. Diamond, Zinc Blende, and Wurtzite Structures.- 1.2. Bulk Alloys.- 1.3. Alloy Structure Determined by EXAFS.- 1.4. Long-Range Ordered Semiconductor Alloys.- 1.5. Concluding Remarks.- References.- 2. Bonding in Ordered Structures.- 2.1. Cohesive Energy in the Born—Oppenheimer Adiabatic Approximation.- 2.2. Density Functional Theory.- 2.3. Bonds and Bands from Local Density Functional Theory.- 2.4. Tight-Binding Approach.- 2.5. The Bond-Orbital Model.- 2.6. Polarity and Ionicity.- 2.7. Excess Energies of Ordered Alloys.- 2.8. Concluding Remarks.- References.- 3. Elasticity.- 3.1. Definitions and Analysis.- 3.2. Ab Initio Calculations.- 3.3. Valence-Force-Field Model.- 3.4. “Exact” Tight-Binding Calculation.- 3.5. Analytical Expressions in the Bond-Orbital Model.- 3.6. Quantitative Tight-Binding Model.- 3.7. Elasticity in Alloys.- 3.8. Concluding Remarks.- References.- 4. Alloy Statistics and Phase Diagrams.- 4.1. Mixing Free Energy, Miscibility Gap, and Order-Disorder Transitions.- 4.2. Analytical Models.- 4.3. Phase Diagram: Common Tangent Line and Activity Coefficient.- 4.4. Vieland’s Method and Binary Liquidus.- 4.5. Ternary Phase Diagrams.- 4.6. Phase Diagram Data and Simple Mixing Enthalpy Models.- 4.7. Generalized Quasi-Chemical Theory.- 4.8. Internal Strain and Cluster Energies.- 4.9. Sixteen-Bond Microclusters.- 4.10. Cluster Variational Method.- 4.11. Ab Initio Calculations.- 4.12. Concluding Remarks.- References.- Appendix 4A: Analytical Formulas of GQCA.- Appendix 4B: Critical Temperature in GQCA.- Appendix 4C: GQCA at Low Temperature.- 5. Band Structure Theory.- 5.1. Formation of Energy Bands.- 5.2. LCAO and the Empirical Tight-Binding Method.- 5.3. Plane-Wave Method and Empirical Pseudopotentials.- 5.4. Band Gaps andEffective Masses.- 5.5. Band Structure of Semiconductor Alloys: Problems and Applications.- 5.6. Green Function and Spectral Density of States.- 5.7. Perturbation Theory and Bowing of Fundamental Gaps.- 5.8. Multiple Scattering Theory and the Coherent Potential Approximation.- 5.9. A Single-Band Alloy Model.- 5.10. Molecular CPA for Zinc Blende Alloys.- 5.11. Effects of Diagonal and Off-Diagonal Disorder on Band-Edge Properties.- 5.12. Concluding Remarks.- References.- 6. Transport.- 6.1. Master and Boltzmann Equations.- 6.2. Electron—Phonon Interaction and Single-Particle Master Equation.- 6.3. Low-Field Transport for Nondegenerate Electrons in Collision—Time Approximations.- 6.4. Mobilities in Alloys: Example, SixGe1-x.- 6.5. Hot-Electron v—E Characteristics: Comparison of Materials’ Merits.- 6.6. Scattering Mechanisms.- 6.7. Expansion Solution of the Boltzmann Equation.- 6.8. Near-Ballistic Transport.- 6.9. Intervalley Scattering.- 6.10. Narrow-Gap Materials.- 6.11. Concluding Remarks.- References.- 7. Band Structures of Selected Semiconductors and Their Alloys.- 7.1. Hybrid Pseudopotential and Tight-Binding Model (HPT).- 7.2. Band Structures and Hamiltonian Parameters for III–V Constituent Compounds.- 7.3. The HPT Model Applied to III–V Pseudobinary Alloys.- 7.4. Band Structures of Selected III–V Zinc Blende Alloys.- 7.5. Band Structures and Hamiltonian Parameters for II–VI Zinc Blende Compounds.- 7.6. II–VI Zinc Blende Pseudobinary Alloys.- 7.7. Concluding Remarks.- References.- Appendix 7A: Band Structure Calculation Using HPT.- Appendix 7B: VCA Hamiltonian, Alloy Disorder and Molecular ATA Calculation.- 7B.1. The Alloy Hamiltonian in HPT.- 7B.2. The VCA Hamiltonian.- 7B.3. Disorder Hamiltonian and ATA Calculation.- 7B.4. Band Calculation Usingthe Molecular ATA.- Problems.- 1.- 2.- 3.- 4.- 5.- 6.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List