Semantic Image Segmentation: Two Decades of Research

Author:   Gabriela Csurka ,  Riccardo Volpi ,  Boris Chidlovskii
Publisher:   now publishers Inc
ISBN:  

9781638280767


Pages:   172
Publication Date:   19 October 2022
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $261.36 Quantity:  
Add to Cart

Share |

Semantic Image Segmentation: Two Decades of Research


Add your own review!

Overview

Semantic image segmentation (SiS) plays a fundamental role towards a general understanding of the image content and context, in a broad variety of computer vision applications, thus providing key information for the global understanding of an image. This monograph summarizes two decades of research in the field of SiS, where a literature review of solutions starting from early historical methods is proposed, followed by an overview of more recent deep learning methods, including the latest trend of using transformers. The publication is complemented by presenting particular cases of the weak supervision and side machine learning techniques that can be used to improve the semantic segmentation, such as curriculum, incremental or self-supervised learning. State-of-the-art SiS models rely on a large amount of annotated samples, which are more expensive to obtain than labels for tasks such as image classification. Since unlabeled data is significantly cheaper to obtain, it is not surprising that Unsupervised Domain Adaptation (UDA) reached a broad success within the semantic segmentation community. Therefore, a second core contribution of this monograph is to summarize five years of a rapidly growing field, Domain Adaptation for Semantic Image Segmentation (DASiS), which embraces the importance of semantic segmentation itself and a critical need of adapting segmentation models to new environments. In addition to providing a comprehensive survey on DASiS techniques, newer trends such as multi-domain learning, domain generalization, domain incremental learning, test-time adaptation and source-free domain adaptation are also presented. The publication concludes by describing datasets and benchmarks most widely used in SiS and DASiS and briefly discusses related tasks such as instance and panoptic image segmentation, as well as applications such as medical image segmentation. This monograph should provide researchers across academia and industry with a comprehensive reference guide, and will help them in fostering new research directions in the field.

Full Product Details

Author:   Gabriela Csurka ,  Riccardo Volpi ,  Boris Chidlovskii
Publisher:   now publishers Inc
Imprint:   now publishers Inc
Weight:   0.251kg
ISBN:  

9781638280767


ISBN 10:   1638280762
Pages:   172
Publication Date:   19 October 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Preface 1. Semantic Image Segmentation (SiS) 2. Domain Adaptation for SiS (DASiS) 3. Datasets and Benchmarks 4. Related Segmentation Tasksn 5. Summary and Perspectives Abbreviations References

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List