Self-Organization in Optical Systems and Applications in Information Technology

Author:   Mikhail A. Vorontsov ,  Walter B. Miller
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Second Edition 1998
Volume:   66
ISBN:  

9783540641254


Pages:   247
Publication Date:   02 March 1998
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $240.24 Quantity:  
Add to Cart

Share |

Self-Organization in Optical Systems and Applications in Information Technology


Overview

Unlike monographs on nonlinear optics, this work concentrates on problems of self-organization in various important contexts. The reader learns how patterns in non-linear optical systems are created and what theoretical methods can be applied to describe them. Next, various aspects of pattern formation such as associative memory, information processing, spatio-temporal instability and photo refraction are treated.

Full Product Details

Author:   Mikhail A. Vorontsov ,  Walter B. Miller
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Second Edition 1998
Volume:   66
Dimensions:   Width: 15.50cm , Height: 1.40cm , Length: 23.50cm
Weight:   0.500kg
ISBN:  

9783540641254


ISBN 10:   3540641254
Pages:   247
Publication Date:   02 March 1998
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Self-Organization in Nonlinear Optics — Kaleidoscope of Patterns.- 1 What Is This Book About?.- 2 Nonlinear Optics: The Good Old Times.- 3 The First Model — Kerr-Slice/Feedback Mirror System.- 4 Diffusion, Diffraction, and Spatial Scales.- 5 One More Scheme: The First Step Toward Optical Synergetics.- 6 Nonlocal Interactions; Optical Kaleidoscope of Patterns.- 7 OK-Equation and “Dry Hydrodynamics”.- 8 One More Nonlinear Element: Two-Component Optical Reaction-Diffusion Systems.- 9 Diffraction at Last; Rolls and Hexagons.- 10 diffraction and Diffraction.- 11 Far Away from Hexagons: Delay in Time and Space.- 12 Diffusion + Diffraction + (Interference) + Nonlocal Interactions = Akhseals.- References.- 1 Information Processing and Nonlinear Physics: From Video Pulses to Waves and Structures.- 1 Information Encoding by Carrier Modulation and the Physics of Nonlinear Oscillations and Waves.- 2 Modulation of Light Waves and Information Encoding in Digital Optical Computers. Optical Triggers.- 3 Strong Optical Nonlinearities. Nonlinear Materials.- 4 Generation and Transformation of Femtosecond Light Pulses.- 5 Control of Transverse Interactions in Nonlinear Optical Resonators: Generation, Hysteresis, and Interaction of Nonlinear Structures.- 6 Conclusion. Nonlinear Optics and Molecular Electronics.- References.- 2 Optical Design Kit of Nonlinear Spatial Dynamics.- 1 Elementary Optical Synergetic Blocks.- 2 Integral Transverse Interactions.- 3 Optical Counterparts of Two-Component Reaction-Diffusion Systems.- 4 Conclusion.- References.- 3 Pattern Formation in Passive Nonlinear Optical Systems.- 1 Induced and Spontaneous Patterns.- 2 Mirror Feedback Systems.- 3 Pattern Formation in Optical Cavities.- 4 Conclusion.- References.- 4 Spatio-Temporal Instability ThresholdCharacteristics in Two-Level Atom Devices.- 1 Linear Stability Analysis of Stationary Solutions.- 2 Feedback Mirror Experiment.- 3 The Ségard and Macke Experiment.- 4 Rayleigh Self-Oscillation in an Intrinsic System.- 5 Conclusion.- References.- 5 Transverse Traveling-Wave Patterns and Instabilities in Lasers.- 1 Basic Equations and Transverse Traveling-Wave Solution.- 2 Instabilities: Direct Stability Analysis and Phase Equations.- 3 Pattern Transition and Selection.- 4 Conclusion.- References.- 6 Laser-Based Optical Associative Memories.- 1 Nonlinear Dynamic Equations and Steady-State Equations.- 2 Single- and Multimode Stationary Solutions. Spatial Multistability.- 3 Operation with Injected Signal.- 4 General Description of the System.- References.- 7 Pattern and Vortex Dynamics in Photorefractive Oscillators.- 1 Pattern Formation and Complexity.- 2 Phase Singularities, Topological Defects, and Turbulence.- 3 Theory of Pattern Formation and Pattern Competition.- References.- 8 Prom the Hamiltonian Mechanics to a Continuous Media. Dissipative Structures. Criteria of Self-Organization.- 1 The Transition from Reversible Equations of Mechanics to Irreversible Equations of the Statistical Theory.- 2 The Unified Description of Kinetic and Hydrodynamic Motion.- 3 The Equation of Entropy Balance. The Heat Flow.- 4 Equations of Hydrodynamics with Self-Diffusion.- 5 Effect of Self-Diffusion on the Spectra of Hydrodynamic Fluctuations.- 6 The Kinetic Approach in the Theory of Self-Organization — Synergetics. Basic Mathematical Models.- 7 Kinetic and Hydrodynamic Description of the Heat Transfer in Active Medium.- 8 Kinetic Equation for Active Medium of Bistable Elements.- 9 Kinetic Fluctuations in Active Media.- 10 Natural Flicker Noise (“1/f Noise”).- 11 Criteria ofSelf-Organization.- 12 Conclusion. Associative Memory and Pattern Recognition.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List