|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Mark Girolami , Mark GirolamiPublisher: Springer London Ltd Imprint: Springer London Ltd Edition: Edition. ed. Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.440kg ISBN: 9781852330668ISBN 10: 185233066 Pages: 271 Publication Date: 25 June 1999 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction.- 1.1 Self-Organisation and Blind Signal Processing.- 1.2 Outline of Book Chapters.- 2. Background to Blind Source Separation.- 2.1 Problem Formulation.- 2.2 Entropy and Information.- 2.2.1 Entropy.- 2.2.2 Kullback-Leibler Entropy and Mutual Information.- 2.2.3 Invertible Probability Density Transformations.- 2.3 A Contrast Function for ICA.- 2.4 Cumulant Expansions of Probability Densities and Higher Order Statistics.- 2.4.1 Moment Generating and Cumulant Generating Functions.- 2.4.2 Properties of Moments and Cumulants.- 2.5 Gradient Based Function Optimisation.- 2.5.1 The Natural Gradient and Covariant Algorithms.- 3. Fourth Order Cumulant Based Blind Source Separation.- 3.1 Early Algorithms and Techniques.- 3.2 The Method of Contrast Minimisation.- 3.3 Adaptive Source Separation Methods.- 3.4 Conclusions.- 4. Self-Organising Neural Networks.- 4.1 Linear Self-Organising Neural Networks.- 4.1.1 Linear Hebbian Learning.- 4.1.2 Principal Component Analysis.- 4.1.3 Linear Anti-Hebbian Learning.- 4.2 Non-Linear Self-Organising Neural Networks.- 4.2.1. Non-Linear Anti-Hebbian Learning: The Herrault-Jutten Network.- 4.2.2 Information Theoretic Algorithms.- 4.2.3 Non-Linear Hebbian Learning Algorithms.- 4.2.3.1 Signal Representation Error Minimisation.- 4.2.3.2 Non-Linear Criterion Maximisation.- 4.3 Conclusions.- 5. The Non-Linear PCA Algorithm and Blind Source Separation.- 5.1 Introduction.- 5.2 Non-Linear PCA Algorithm and Source Separation.- 5.3 Non-Linear PCA Algorithm Cost Function.- 5.4 Non-Linear PCA Algorithm Activation Function.- 5.4.1 Asymptotic Stability Requirements.- 5.4.2 Stability Properties of the Compound Activation Function.- 5.4.3 Stability of Solution with Sub-Gaussian Sources.- 5.4.4 Simulation: Separation of Mixtures of Sub-Gaussian Sources.- 5.4.5 Stability of Solution with Super-Gaussian Sources.- 5.4.6 Simulation: Separation of Mixtures of Super-Gaussian Sources.- 5.4.7 Separation of Mixtures of Both Sub-and Super-Gaussian Sources.- 5.5 Conclusions.- 6. Non-Linear Feature Extraction and Blind Source Separation.- 6.1 Introduction.- 6.2 Structure Identification in Multivariate Data.- 6.3 Neural Network Implementation of Exploratory Projection Pursuit.- 6.4 Neural Exploratory Projection Pursuit and Blind Source Separation.- 6.5 Kurtosis Extrema.- 6.6 Finding Interesting and Independent Directions.- 6.7 Finding Multiple Interesting and Independent Directions Using Symmetric Feedback and Adaptive Whitening.- 6.7.1 Adaptive Spatial Whitening.- 6.7.2 Simulations.- 6.7.3 An Extended EPP Network with Non-Linear Output Connections.- 6.8 Finding Multiple Interesting and Independent Directions Using Hierarchic Feedback and Adaptive Whitening.- 6.9 Simulations.- 6.10 Adaptive BSS Using a Deflationary EPP Network.- 6.11 Conclusions.- 7. Information Theoretic Non-Linear Feature Extraction And Blind Source Separation.- 7.1 Introduction.- 7.2 Information Theoretic Indices for EPP.- 7.3 Maximum Negentropy Learning.- 7.3.1 Single Neuron Maximum Negentropy Learning.- 7.3.2 Multiple Output Neuron Maximum Negentropy Learning.- 7.3.3 Maximum Negentropy Learning and Infomax Equivalence.- 7.3.4 The Natural Gradient and Covariant Learning.- 7.4 General Maximum Negentropy Learning.- 7.5 Stability Analysis of Generalised Algorithm.- 7.6 Simulation Results.- 7.7 Conclusions.- 8. Temporal Anti-Hebbian Learning.- 8.1 Introduction.- 8.2 Blind Source Separation of Convolutive Mixtures.- 8.3 Temporal Linear Anti-Hebbian Model.- 8.4 Comparative Simulation.- 8.5 Review of Existing Work on Adaptive Separation of Convolutive Mixtures.- 8.6 Maximum Likelihood Estimation and Source Separation.- 8.7 Temporal Anti-Hebbian Learning Based on Maximum Likelihood Estimation.- 8.8 Comparative Simulations Using Varying PDF Models.- 8.9 Conclusions.- 9. Applications.- 9.1 Introduction.- 9.2 Industrial Applications.- 9.2.1 Rotating Machine Vibration Analysis.- 9.2.2 A Multi-Tag Frequency Identification System.- 9.3 Biomedical Applications.- 9.3.1 Detection of Sleep Spindles in EEG.- 9.4 ICA: A Data Mining Tool.- 9.5 Experimental Results.- 9.5.1 The Oil Pipeline Data.- 9.5.2 The Swiss Banknote Data.- 9.6 Conclusions.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |