|
![]() |
|||
|
||||
Overview1. The ninth International Summer School on Crystal Growth. ISSCG IX A complete theory of crystal growth establishes the full dependence of crystal size, shape and structure on external parameters like temperature, pressure, composition, purity, growth rate and stirring of the mother phase, implicitly establishing how the corresponding fields vary in space and time. Such a theory does not exist, however. Therefore equipment to grow crystals is developed on the basis of partial knowledge. Skill, experience and creativity still are of central importance for the success o~ a crystal growth system. In this book we collected contributions from the teachers of the ninth International Summer School on Crystal Growth ISSCG IX, held 11-16 june 1995 at Papendal, the national sports centre of the Netherlands. These contributions were used during the lectures. The authors have tried to present their work in such a way that only basic physical knowledge is required to understand the papers. The book can be used as an introduction to various important sub disciplines of the science and technology of crystal growth. Since, however the information content considerably exceeds a lecture note level and touches the present limits of understanding, it is an up to date handbook as well. Full Product DetailsAuthor: J.P. van der Eerden , O.S.L. BruinsmaPublisher: Springer Imprint: Springer Edition: 1995 ed. Dimensions: Width: 15.50cm , Height: 2.10cm , Length: 23.50cm Weight: 0.623kg ISBN: 9789401040624ISBN 10: 9401040621 Pages: 391 Publication Date: 09 October 2012 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1. Classical and Statistical Thermodynamics.- 1.1 Thermodynamics and phase diagrams — fundamentals and tools for crystal growth.- 1.2 Atomic models for crystal growth.- 1.3 The syncrystallization of thianaphthene and naphthelene, an exercise in thermodynamic phase diagram analysis.- 1.4 From thermoelasticity to surface melting.- 2. Crystallization Concepts.- 2.1 Nucleation.- 2.2 Topics in crystal growth kinetics.- 2.3 Lattice growth models.- 2.4 Macroscopic transport processes during the growth of single crystals from the melt.- 3. Single Crystals and Epitaxy.- 3.1 Large-scale numerical modeling of the bulk crystal growth from the melt and solution.- 3.2 Vapour growth.- 3.3 Advanced epitaxial techniques for III-V materials.- 4. Crystal Shape.- 4.1 Morphology of crystals: past and future.- 4.2 Modulated and Quasicrystals.- 4.3 Modelling the habit modification of molecular crystals by the action of “tailor-made” additives.- 4.4 Morphological instability: dendrites, seaweed and fractals.- 5. Mass Crystallization.- 5.1 Mass crystallization, number balances and size dristributions.- 5.2 Crystallizers.- 5.3 Melt suspension crystallization.- 5.4 Melt layer crystallization.- 5.5 Secondary nucleation.- 6. Crystals Grown from Large Growth Units.- 6.1 Crystallization in colloidal suspensions.- 6.2 Polytypism and inorganic crystal growth and reactivity.- 6.3 Polymer crystallization.- 6.4 Principles of crystal growth in protein crystallization.- 7. Surface Structure.- 7.1 Some common pathologies in step growth: impurities and surface reconstruction.- 7.2 Characterization of crystal growth processes using synchrotron X-ray techniques.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |