Robot Learning Human Skills and Intelligent Control Design

Author:   Chenguang Yang (University of the West of England, Bristol) ,  Chao Zeng (University of Hamburg, Germany) ,  Jianwei Zhang (University of Hamburg, Germany)
Publisher:   Taylor & Francis Ltd
ISBN:  

9780367634377


Pages:   174
Publication Date:   25 September 2023
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $96.99 Quantity:  
Add to Cart

Share |

Robot Learning Human Skills and Intelligent Control Design


Add your own review!

Overview

In the last decades robots are expected to be of increasing intelligence to deal with a large range of tasks. Especially, robots are supposed to be able to learn manipulation skills from humans. To this end, a number of learning algorithms and techniques have been developed and successfully implemented for various robotic tasks. Among these methods, learning from demonstrations (LfD) enables robots to effectively and efficiently acquire skills by learning from human demonstrators, such that a robot can be quickly programmed to perform a new task. This book introduces recent results on the development of advanced LfD-based learning and control approaches to improve the robot dexterous manipulation. First, there's an introduction to the simulation tools and robot platforms used in the authors' research. In order to enable a robot learning of human-like adaptive skills, the book explains how to transfer a human user’s arm variable stiffness to the robot, based on the online estimation from the muscle electromyography (EMG). Next, the motion and impedance profiles can be both modelled by dynamical movement primitives such that both of them can be planned and generalized for new tasks. Furthermore, the book introduces how to learn the correlation between signals collected from demonstration, i.e., motion trajectory, stiffness profile estimated from EMG and interaction force, using statistical models such as hidden semi-Markov model and Gaussian Mixture Regression. Several widely used human-robot interaction interfaces (such as motion capture-based teleoperation) are presented, which allow a human user to interact with a robot and transfer movements to it in both simulation and real-word environments. Finally, improved performance of robot manipulation resulted from neural network enhanced control strategies is presented. A large number of examples of simulation and experiments of daily life tasks are included in this book to facilitate better understanding of the readers.

Full Product Details

Author:   Chenguang Yang (University of the West of England, Bristol) ,  Chao Zeng (University of Hamburg, Germany) ,  Jianwei Zhang (University of Hamburg, Germany)
Publisher:   Taylor & Francis Ltd
Imprint:   CRC Press
Weight:   0.453kg
ISBN:  

9780367634377


ISBN 10:   0367634376
Pages:   174
Publication Date:   25 September 2023
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Chenguang Yang is a Co-Chair of the Technical Committee on Collaborative Automation for Flexible Manufacturing (CAFM), IEEE Robotics and Automation Society and Co-Chair of the Technical Committee on Bio-mechatronics and Bio-robotics Systems (B2S), IEEE Systems, Man, and Cybernetics Society. Chao Zeng is currently a Research Associate at the Institute of Technical Aspects of Multimodal Systems, Universität Hamburg. Jianwei Zhang is the director of TAMS, Department of Informatics, Universität Hamburg, Germany.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List