|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Chang Q SunPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: Softcover reprint of the original 1st ed. 2014 Volume: 108 Dimensions: Width: 15.50cm , Height: 4.20cm , Length: 23.50cm Weight: 1.694kg ISBN: 9789811012242ISBN 10: 9811012245 Pages: 807 Publication Date: 30 April 2017 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsPart I Molecular Chemisorption.- Introduction.- Foundations.- STM and LEED: Atomic Valences and Bond Geometry.- STS and PES: Valence DOS.- TDS: Bond Nature and Bond Strength.- EELS and Raman: Stiffness of Weak Bond Interaction.- Kinetics of Bond Forming and Bond Switching.- Design Materials and Processes.- Concluding Remarks.- Part II Atomic Undercoordination.- Introduction.- Principles: BOLS and NEP.- Surface Relaxation and Nanosolid Densification.- End and Edge States: Entrapment and Polarization.- Thermal Stability: Atomic Cohesive Energy.- Lattice Dynamics: Phonon Relaxation.- Electrons: Entrapment and Polarization.- Band Gap Expansion: Photon Emission and Absorption.- Dielectric Suppression.- Magnetic Modulation.- Functionalities of Nonbonding Electrons.- Concluding Remarks.- Part III Mechano and Thermo Activation.- Introduction.- Principles.- Liquid and Solid Surfaces.- Monatomic Chains: Bond Length, Strength and Maximal Strain.- Atomic Sheets, Nanotubes and Nanowires.- Nanograins I: Elasticity and Extensibility.- Nanograins II: Plastic Deformation and Yield Strength.- Atomic Vacancy, Nanocavity and Metallic Foams.- Compounds and Nanocomposites.- Concluding Remarks.- Part IV Water and Ice.- Introduction.- Principles: Hypotheses and Expectations.- Water Ice Under Compression.- Cooling Transition from Hot-Water to Deep-Cold Ice.- Molecular Clusters, Surface Skins and Ultrathin Films.- P, T, N Coupling.- Concluding Remarks.ReviewsAuthor InformationDr. Chang Q Sun received a BSc in 1982 from Wuhan University of Science and Technology and an MSc in 1987 from Tianjin University, China. He completed his PhD in 1997 at Murdoch University, Australia and then joined Nanyang Technological University in 1997 as a faculty up to date. His original contributions to the advancement of coordination bond and electronic engineering with multiple breakthroughs include: 1) bond-band-barrier (3B) correlation for C, N, O chemisorption 3B dynamics; 2) hydrogen-bond asymmetric relaxation & H2O anomalies; 3) bond-order-length-strength (BOLS) correlation for the physical chemistry of defect, surface and nanosolid; 4) nonbonding electron polarization (NEP) at undercoordinated sites; 5) local-bond-average approach for solid meso-mechano-thermo dynamics; 6) BOLS-TB algorithm for edge states discrimination; 7) zone-selective photoelectron spectroscopic (ZPS) purification of bonds & electrons associated with undercoordinated defect and surface atoms and hetero-coordinated interfaces; 8) Raman quantification of the length, energy, compressibility, Debye temperature, force constant & relaxation dynamics of bonds; 9) STM/S/VLEED quantification of 4-stage Cu3O2 bonding kinetics; & 10) functional materials devise, etc. Dr. Sun has published over 250 principally-authored journal articles, 4 book chapters, 4 patents and 10 themed reports in Surface Science Reports, Chemical Reviews, Progress in Materials Science and Progress in Solid State Chemistry. etc. His BOLS theory has been adopted as teaching materials by institutes in multiple nations. He was conferred the First Laureate of the 25th Khwarizmi International Science Award in 2012 and the Inaugural Nanyang Award of Research in 2005. He was elected as Fellow of the Royal Society of Chemistry (FRSC, 2006) and the Institute of Physics (FInstP, 2007). He is currently on the Editorial Advisory Board for 8 journals and holding honorary appointments at multiple institutions. Tab Content 6Author Website:Countries AvailableAll regions |