Reinforcement Learning Methods in Speech and Language Technology

Author:   Baihan Lin
Publisher:   Springer International Publishing AG
ISBN:  

9783031537226


Pages:   202
Publication Date:   13 November 2025
Format:   Paperback
Availability:   Not yet available   Availability explained
This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release.

Our Price $263.97 Quantity:  
Add to Cart

Share |

Reinforcement Learning Methods in Speech and Language Technology


Overview

Full Product Details

Author:   Baihan Lin
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
ISBN:  

9783031537226


ISBN 10:   303153722
Pages:   202
Publication Date:   13 November 2025
Format:   Paperback
Publisher's Status:   Active
Availability:   Not yet available   Availability explained
This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release.

Table of Contents

Part I. A New Learning Paradigm in Speech and Language Technology.- Chapter 1. RL+SLT: Emerging RL-Powered Speech and Language Technologies.- Chapter 2. Why is RL+SLT Important, Now and How?.- Part II.  Bandits and Reinforcement Learning: A Gentle Introduction.- Chapter 3. Introduction to the Bandit Problems.- Chapter 4. Reinforcement Learning: Preliminaries and Terminologies.- Chapter 5. The RL Toolkit: A Spectrum of Algorithms.- Chapter 6. Inverse Reinforcement Learning Problem.- Chapter 7. Behavioral Cloning and Imitation Learning.- Part III. Reinforcement Learning in SLT Applications.- Chapter 8. Reinforcement Learning Formulations for Speech and Language Applications.- Chapter 9. Reinforcement Learning in Automatic Speech Recognition (ASR): The Voice-First Revolution.- Chapter 10. Reinforcement Learning in Speaker Recognition and Diarization: Decoding the Voices in the Crowd.- Chapter 11. Reinforcement Learning in Natural Language Understanding (NLU): Teaching Machines to Comprehend.- Chapter 12. Reinforcement Learning in Spoken Language Understanding (SLU): Giving Machines an Ear for Understanding.- Chapter 13. Reinforcement Learning in Text-to-Speech (TTS) Synthesis: Giving Machines a Voice.- Chapter 14. Reinforcement Learning in Natural Language Generation (NLG): Machines as Wordsmiths.- Chapter 15. Reinforcement Learning in Large Language Models (LLM): The Rise of AI Language Giants.- Chapter 16. Reinforcement Learning in Conversational Recommendation Systems (CRS): AI’s Personal Touch.- Part IV.  Advanced Topics and Future Avenues.- Chapter 17. Emerging Strategies in Reinforcement Learning Methods.- Chapter 18. Navigating the Frontiers: Key Challenges and Opportunities in RL-Powered Speech and Language Technology.- Chapter 19. Reflections, Resources, and Future Horizons in RL+SLT.

Reviews

Author Information

Dr. Baihan Lin is a leading researcher, neuroscientist, inventor, and professor specializing in speech and natural language processing (NLP). He holds faculty positions at the Icahn School of Medicine at Mount Sinai and Harvard University. Known for his expertise in trustworthy Neuro-AI and computational psychiatry, Dr. Lin has made significant contributions to these fields through his work at Columbia University, where he earned his PhD, and through his research at leading tech companies such as IBM, Google, Microsoft, Amazon, and BGI Genomics. His research program focuses on developing intelligent speech and text-based systems to enhance human-AI and human-human interactions in healthcare. Notably, he developed the first-ever online and reinforcement learning (RL)-based speaker diarization system and RL-based interactive spoken language understanding (SLU) systems for children with speech and communication disorders. Dr. Lin's work in deep learning, RL, and NLP has led to real-world applications, including AI companions for therapists and context-aware virtual realities. He has authored over 50 peer-reviewed publications and patents and has served on program committees and as a reviewer for over 15 top AI conferences and more than 20 journals. He has chaired tutorials and workshops at INTERSPEECH, ICASSP, WACV, and IJCAI, focusing on RL, human-in-the-loop language technology, and most recently, the alignment, privacy, security, and governance of generative AI. As a finalist for the Bell Labs Prize and XPRIZE, Dr. Lin's contributions in real-time algorithms advance the understanding of the human brain, support disadvantaged individuals with mental health conditions, and drive the evolution of affective and empathetic AI in the era of large language models.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List