Regression Analysis: Theory, Methods, and Applications

Author:   Ashish Sen ,  Muni Srivastava
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1990
ISBN:  

9781461287896


Pages:   348
Publication Date:   23 December 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $287.76 Quantity:  
Add to Cart

Share |

Regression Analysis: Theory, Methods, and Applications


Add your own review!

Overview

Full Product Details

Author:   Ashish Sen ,  Muni Srivastava
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1990
Dimensions:   Width: 15.50cm , Height: 1.90cm , Length: 23.50cm
Weight:   0.557kg
ISBN:  

9781461287896


ISBN 10:   1461287898
Pages:   348
Publication Date:   23 December 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Introduction.- 1.1 Relationships.- 1.2 Determining Relationships: A Specific Problem.- 1.3 The Model.- 1.4 Least Squares.- 1.5 Another Example and a Special Case.- 1.6 When Is Least Squares a Good Method?.- 1.7 A pleasure of Fit for Simple Regression.- 1.8 Mean and Variance of b0 and b1.- 1.9 Confidence Intervals and Tests.- 1.10 Predictions.- Appendix to Chapter 1.- Problems.- 2 Multiple Regression.- 2.1 Introduction.- 2.2 Regression Model in Matrix Notation.- 2.3 Least Squares Estimates.- 2.4 Examples 31 2..- Gauss-Markov Conditions.- 2.6 Mean and Variance of Estimates Under G-M Conditions.- 2.7 Estimation of ?.- 2.8 Measures of Fit 39?2.- 2.9 The Gauss-Markov Theorem.- 2.10 The Centered Model.- 2.11 Centering and Scaling.- 2.12 *Constrained Least Squares.- Appendix to Chapter 2.- Problems.- 3 Tests and Confidence Regions.- 3.1 Introduction.- 12 Linear Hypothesis.- 3.3 *Likelihood Ratio Test.- 3.4 *Distribution of Test Statistic.- 3.5 Two Special Cases.- 3.6 Examples.- 3.7 Comparison of Repression Equations.- 3.8 Confidence Intervals and Regions.- 3.8.1 C.I. for the Expectation of a Predicted Value.- 3.8.2 C.I for a Future Observation.- 3.8.3 *Confidence Region for Regression Parameters.- 3.8.4 *C.I’s for Linear Combinations of Coefficients.- Problem.- 4 Indicator Variables.- 4.1 Introduction.- 4.2 A Simple Application.- 4.3 Polychotomous Variables.- 4.4 Continuous and Indicator Variables.- 4.5 Broken Line Regression.- 4.6 Indicators as Dependent Variables.- Problems.- 5 The Normality Assumption.- 5.1 Introduction.- 5.2 Checking for Normality.- 5.2.1 ProbahilItV Plots.- 5.2.2 Tests for Normalitv.- 5.3 Invoking Large Sample Theory.- 5.4 *Bootstrapping.- 5.5 *Asymptotic Theory.- Problems.- 6 Unequal Variances.- 6.1 Introduction.- 6.2 Detecting Heteroscedasticity.- 6.2.1 Formal Tests.- 6.3 Variance Stabilizing Transformations.- 6.4 Weighing.- Problems.- 7 *Correlated Errors.- 7.1 Introduction.- 7.2 Generalized Least Squares: Case When ? Is Known.- 7.3 Estimated Generalized Least Squares.- 7.3.1 Error Variances Unequal and Unknown.- 7.4 Nested Errors.- 7.5 The Growth Curve Model.- 7.6 Serial Correlation.- 7.6.1 The Durbin-Watson Test.- 7.7 Spatial Correlation.- 7.7. 1 Testing for Spatial Correlation.- 7.7.2 Estimation of Parameters.- Problems.- 8 Outliers and Influential Observations.- 8.1 Introduction.- 8.2 The Leverage.- 8.2.1 *Leverage as Description of Remoteness.- 8.3 The Residuals.- 8.4 Detecting Outliers and Points That Do Not Belong to the Model 157.- 8.5 Influential Observations.- 8.5.1 Other Measures of Influence.- 8.6 Examples.- Appendix to Chapter 8.- Problems.- 9 Transformations.- 9.1 Introduction.- 9.1.1 An Important Word of Warning.- 9.2 Some Common Transformations.- 9.2.1 Polynomial Regression.- 9.2.2 Spline.- 9.2.3 Multiplicative Models.- 9.2.4 The Logit Model for Proportions.- 9.3 Deciding on the Need for Transformations.- 9.3.1 Examining Residual Plots.- 9.3.2 Use of Additional Terms.- 9.3.3 Use of Repeat Measurements.- 9.3.4 Daniel and Wood Near-Neighbor Approach.- 9.3.5 Another Method Based on Near Neighbors.- 9.4 Choosing Transformations.- 9.4.1 Graphical Method: One Independent. Variable.- 9.4.2 Graphical Method: Many Independent Variables.- 9.4.3 Analytic Methods: Transforming the Response.- 9.4.4 Analytic Methods: Transforming the Predictors.- 9.3.5 Simultaneous Power Transformations for Predictors and Response.- Appendix to Chapter 9.- Problems.- 10 Multicollinearity.- 10.1 Introduction.- 10.2 Multicollinearity and Its Effects.- 10.3 Detecting Multicollinearity.- 10.3.1 Tolerances and Variance Inflation Factors.- 10.3.2 Eigenvalues and Condition Numbers.- 10.3.3 Variance Components.- 10.4 Examples.- Problems.- 11 Variable Selection.- 11.1 Introduction.- 11.2 Some Effects of Dropping Variables.- 11.2.1 Effects on Estimates of ßj.- 11.2.2 *Effect on Estimation of Error Variance.- 11.2.3 *Effect on Covariance Matrix of Estimates.- 11.2.4 *Effect on Predicted Values: Mallows’ Cp.- 11.3 Variable Selection Procedures.- 11.3.1 Search Over All Possible Subsets.- 11.3.2 Stepwise Procedures.- 11.3.3 Stagewise and Modified Stagewise Procedures.- 11.4 Examples.- Problems.- 12 *Biased Estimation.- 12.1 Introduction 2..- 12.2 Principal Component. Regression.- 12.2.1 Bias and Variance of Estimates.- 12.3 Ridge Regression.- 12.3.1 Physical Interpretations of Ridge Regression.- 12.3.2 Bias and Variance of Estimates.- 12.4 Shrinkage Estimator.- Problems.- A Matrices.- A.1 Addition and Multiplication.- A.2 The Transpose of a Matrix.- A.3 Null and Identity Matrices.- A.4 Vectors.- A.5 Rank of a Matrix.- A.6 Trace of a Matrix.- A.7 Partitioned Matrices.- A.8 Determinants.- A.9 Inverses.- A.10 Characteristic Roots and Vectors.- A.11 Idempotent Matrices.- A.12 The Generalized Inverse.- A.13 Quadratic Forms.- A.14 Vector Spaces.- Problems.- B Random Variables and Random Vectors.- B.1 Random Variables.- B.1.1 Independent. Random Variables.- B.1.2 Correlated Random Variables.- B.1.3 Sample Statistics.- B.1.4 Linear Combinations of Random Variables.- B.2 Random Vectors.- B.3 The Multivariate Normal Distribution.- B.4 The Chi-Square Distributions.- B.5 The F and t Distributions.- B.6 Jacobian of Transformations.- B.7 Multiple Correlation.- Problems.- C Nonlinear Least Squares.- C.1 Gauss-Newton Type Algorithms.- C.1.1 The Gauss-Newton Procedure.- C.1.2 Step Halving.- C.1.3 Starting Values and Derivatives.- C.1.4 Marquardt Procedure.- C.2 Some Other Algorithms.- C.2.1 Steepest Descent Method.- C.2.2 Quasi-Newton Algorithms.- C.2.3 The Simplex Method.- C.2.4 Weighting.- C.3 Pitfalls.- C.4 Bias, Confidence Regions and Measures of Fit.- C.5 Examples.- Problems.- Tables.- References.- Author Index.

Reviews

I found this to be the most complete and up-to-date regression text I have come across...this text has much to offer. -Journal of the American Statistical Association The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market. -mathermatical Reviews ...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression. -SIAM Review


I found this to be the most complete and up-to-date regression text I have come across...this text has much to offer. -Journal of the American StatisticalAssociation The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market. -mathermatical Reviews ...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression. -SIAM Review


I found this to be the most complete and up-to-date regression text I have come across...this text has much to offer. -Journal of the American Statistical Association The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market. -mathermatical Reviews . ..a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression. -SIAM Review


I found this to be the most complete and up-to-date regression text I have come across...this text has much to offer. -Journal of the American Statistical Association The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market. -mathermatical Reviews ...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression. -SIAM Review


"""I found this to be the most complete and up-to-date regression text I have come across...this text has much to offer."" -Journal of the American Statistical Association ""The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market."" -mathermatical Reviews ""...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression."" -SIAM Review"


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List