Redox Systems Under Nano-Space Control

Author:   Toshikazu Hirao
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of hardcover 1st ed. 2006
ISBN:  

9783642067365


Pages:   292
Publication Date:   12 February 2010
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $419.76 Quantity:  
Add to Cart

Share |

Redox Systems Under Nano-Space Control


Add your own review!

Overview

The generation of novel redox systems under nano-space control is one of the most exciting fields in present organic, inorganic, and supramolecular chemistry. The authors have drawn together the newest information on the construction of such novel redox systems using nano-space control of complexation or molecular chain-induced spaces and metal- or self-assembled spaces through combining techniques in coordination, supramolecular, and bio-inspired chemistry. Such design on the nano level produces hybrid conjugated systems composed of transition and synthetic metals, metallohosts, redox-active self-assembled monolayers of helical peptides, DNA-directed metal arrays, photoactive antibody systems, chiral rotaxanes, and redox-active imprinted polymers. In the future, these systems will be the basis for novel selective electron-transfer reactions as well as new functional materials and catalysts.

Full Product Details

Author:   Toshikazu Hirao
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of hardcover 1st ed. 2006
Dimensions:   Width: 15.50cm , Height: 1.60cm , Length: 23.50cm
Weight:   0.486kg
ISBN:  

9783642067365


ISBN 10:   3642067360
Pages:   292
Publication Date:   12 February 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Redox Systems via d,?-Conjugation.- Conjugated Complexes with Quinonediimine Derivatives.- Realizing the Ultimate Amplification in Conducting Polymer Sensors: Isolated Nanoscopic Pathways.- Metal-Containing ?-Conjugated Materials.- Redox Active Architectures and Carbon-Rich Ruthenium Complexes as Models for Molecular Wires.- Molecular Metal Wires Built from a Linear Metal Atom Chain Supported by Oligopyridylamido Ligands.- Multielectron Redox Catalysts in Metal-Assembled Macromolecular Systems.- Redox Systems via Coordination Control.- Triruthenium Cluster Oligomers that Show Multistep/Multielectron Redox Behavior.- Molecular Architecture of Redox-Active Multilayered Metal Complexes Based on Surface Coordination Chemistry.- Programmed Metal Arrays by Means of Designable Biological Macromolecules.- Metal-Incorporated Hosts for Cooperative and Responsive Recognition to External Stimulus.- Synthesis of Poly(binaphthol) via Controlled Oxidative Coupling.- Redox Systems via Molecular Chain Control.- Nano Meccano.- Through-Space Control of Redox Reactions Using Interlocked Structure of Rotaxanes.- Metal-Containing Star and Hyperbranched Polymers.- Electronic Properties of Helical Peptide Derivatives at a Single Molecular Level.- Construction of Redox-Induced Systems Using Antigen-Combining Sites of Antibodies and Functionalization of Antibody Supramolecules.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List