Random Walks on Infinite Groups

Author:   Steven P. Lalley
Publisher:   Springer International Publishing AG
Edition:   2023 ed.
Volume:   297
ISBN:  

9783031256318


Pages:   369
Publication Date:   09 May 2023
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $155.22 Quantity:  
Add to Cart

Share |

Random Walks on Infinite Groups


Add your own review!

Overview

This text presents the basic theory of random walks on infinite, finitely generated groups, along with certain background material in measure-theoretic probability. The main objective is to show how structural features of a group, such as amenability/nonamenability, affect qualitative aspects of symmetric random walks on the group, such as transience/recurrence, speed, entropy, and existence or nonexistence of nonconstant, bounded harmonic functions. The book will be suitable as a textbook for beginning graduate-level courses or independent study by graduate students and advanced undergraduate students in mathematics with a solid grounding in measure theory and a basic familiarity with the elements of group theory. The first seven chapters could also be used as the basis for a short course covering the main results regarding transience/recurrence, decay of return probabilities, and speed. The book has been organized and written so as to be accessible not only to students in probability theory, but also to students whose primary interests are in geometry, ergodic theory, or geometric group theory.

Full Product Details

Author:   Steven P. Lalley
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   2023 ed.
Volume:   297
Weight:   0.810kg
ISBN:  

9783031256318


ISBN 10:   303125631
Pages:   369
Publication Date:   09 May 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 First Steps.- 2 The Ergodic Theorem.- 3 Subadditivity and its Ramifications.- 4 The Carne-Varopoulos Inequality.- 5 Isoperimetric Inequalities and Amenability.- 6 Markov Chains and Harmonic Functions.- 7 Dirichlet’s Principle and the Recurrence Type Theorem.- 8 Martingales.- 9 Bounded Harmonic Functions.- 10 Entropy.- 11 Compact Group Actions and Boundaries.- 12 Poisson Boundaries.- 13 Hyperbolic Groups.- 14 Unbounded Harmonic Functions.- 15 Groups of Polynomial Growth.- Appendix A: A 57-Minute Course in Measure–Theoretic Probability.

Reviews

“This book is about symmetric random walks on finitely generated infinite groups and consists of fifteen chapters followed by an appendix on measure and probability theories. It also offers good accounts on the theories of Markov chains valued in countable spaces and discrete-time martingales.” (Nizar Demni, Mathematical Reviews, May 8, 2024)


Author Information

Steven P. Lalley is professor Emeritus at the Department of Statistics at the University of Chicago. His research includes probability and random processes, in particular: stochastic interacting systems, random walk, percolation, branching processes, combinatorial probability, ergodic theory, and connections between probability and geometry.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List