|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Efthimios Kaxiras (Harvard University, Massachusetts) , John D. Joannopoulos (Massachusetts Institute of Technology)Publisher: Cambridge University Press Imprint: Cambridge University Press Dimensions: Width: 19.70cm , Height: 3.50cm , Length: 25.30cm Weight: 1.620kg ISBN: 9780521117111ISBN 10: 0521117119 Pages: 674 Publication Date: 06 June 2019 Audience: College/higher education , College/higher education , Tertiary & Higher Education , Tertiary & Higher Education Format: Hardback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAdvance praise: 'This book elucidates the essentials of practical electronic structure theory utilized under the hood of commonly employed electronic structure codes, revealed with a clarity and succinctness that only these authors with many decades of experience at the research forefront can provide. This masterpiece is essential reading for researchers engaged in modern materials research, including recent topics in topological constraints and two-dimensional materials.' Evan Reed, Materials Computation and Theory Group, Stanford University Advance praise: 'This is a wonderful book clearly explaining essential concepts of the quantum theory of materials. It should become a classic text in this field.' Marvin Cohen, University of California, Berkeley Advance praise: 'A must-read for aspiring scientists and engineers in the age of interdisciplinary nanoscale science and technology. Two renowned masters in materials physics have opened the depth of condensed matter physics theories to the communities of condensed matter physics, materials science, physical chemistry, and chemical engineering!' Kyeongjae Cho, University of Texas, Dallas Advance praise: 'This book elucidates the essentials of practical electronic structure theory utilized under the hood of commonly employed electronic structure codes, revealed with a clarity and succinctness that only these authors with many decades of experience at the research forefront can provide. This masterpiece is essential reading for researchers engaged in modern materials research, including recent topics in topological constraints and two-dimensional materials.' Evan Reed, Materials Computation and Theory Group, Stanford University Advance praise: 'This is a wonderful book clearly explaining essential concepts of the quantum theory of materials. It should become a classic text in this field.' Marvin Cohen, University of California, Berkeley Advance praise: 'A must-read for aspiring scientists and engineers in the age of interdisciplinary nanoscale science and technology. Two renowned masters in materials physics have opened the depth of condensed matter physics theories to the communities of condensed matter physics, materials science, physical chemistry, and chemical engineering!' Kyeongjae Cho, University of Texas, Dallas Advance praise: 'This book elucidates the essentials of practical electronic structure theory utilized under the hood of commonly employed electronic structure codes, revealed with a clarity and succinctness that only these authors with many decades of experience at the research forefront can provide. This masterpiece is essential reading for researchers engaged in modern materials research, including recent topics in topological constraints and two-dimensional materials.' Evan Reed, Materials Computation and Theory Group, Stanford University Advance praise: 'This is a wonderful book clearly explaining essential concepts of the quantum theory of materials. It should become a classic text in this field.' Marvin Cohen, University of California, Berkeley Advance praise: 'A must-read for aspiring scientists and engineers in the age of interdisciplinary nanoscale science and technology. Two renowned masters in materials physics have opened the depth of condensed matter physics theories to the communities of condensed matter physics, materials science, physical chemistry, and chemical engineering!' Kyeongjae Cho, University of Texas, Dallas 'This book elucidates the essentials of practical electronic structure theory utilized under the hood of commonly employed electronic structure codes, revealed with a clarity and succinctness that only these authors with many decades of experience at the research forefront can provide. This masterpiece is essential reading for researchers engaged in modern materials research, including recent topics in topological constraints and two-dimensional materials.' Evan Reed, Materials Computation and Theory Group, Stanford University 'This is a wonderful book clearly explaining essential concepts of the quantum theory of materials. It should become a classic text in this field.' Marvin Cohen, University of California, Berkeley 'A must-read for aspiring scientists and engineers in the age of interdisciplinary nanoscale science and technology. Two renowned masters in materials physics have opened the depth of condensed matter physics theories to the communities of condensed matter physics, materials science, physical chemistry, and chemical engineering!' Kyeongjae Cho, University of Texas, Dallas 'Written by two leaders in the field … the book features a clear exposition of solid- state physics' fundamental theoretical principles, an excellent account of modern computational approaches and applications, and a first- rate introduction to modern topological concepts and their role in shaping the dynamics of Bloch electrons. Because of the authors' clarity, focus on basic principles, and thoughtful choice of examples, Quantum Theory of Materials serves as a top-notch introduction to solid-state physics not only for physicists but also for chemists, engineers, and materials scientists.' Roberto Car, Princeton University Author InformationEfthimios Kaxiras is the John Hasbrouck Van Vleck Professor of Pure and Applied Physics at Harvard University, Massachusetts. He holds joint appointments in the Department of Physics and the School of Engineering and Applied Sciences, and is an affiliate of the Department of Chemistry and Chemical Biology. He is the Founding Director of the Institute for Applied Computational Science, a Fellow of the American Physical Society and a Chartered Physicist and Fellow of the Institute of Physics, London. John D. Joannopoulos is the Francis Wright Davis Professor of Physics at Massachusetts Institute of Technology (MIT), where he is Director of the Institute for Soldier Nanotechnologies. He is a member of the National Academy of Sciences and American Academy of Arts and Sciences, a Fellow of the American Association for the Advancement of Science, a Fellow of the American Physical Society, and a Fellow of the World Technology Network. His awards include the MIT School of Science Graduate Teaching Award (1991), the William Buechner Teaching Prize of the MIT Department of Physics (1996), the David Adler Award (1997) and Aneesur Rahman Prize (2015) of the American Physical Society, and the Max Born Award of the Optical Society of America. Tab Content 6Author Website:Countries AvailableAll regions |