|
|
|||
|
||||
OverviewThis volume presents the lectures given by distinguishyed contributors at the First German-Polish Max Born Symposium, held at Wojnowice in Poland in September, 1991. This is the first such symposium to continue the tradition of a German-Polish collaboration in theoretical physics in the form of biannual seminars organized between the Universities of Leipzig and Wroclaw since the early seventies. The papers in this volume are devoted to quantum group theory, non-commutative differential geometry, and integrable systems. Particular emphasis is given to the formalisms of noncommutative geometry on quantum groups, the quantum deformation of Poincare algebra and the axiomatric approach to superselection rules. Possible relations between noncommutative geometry and particle phyics models are also considered. For researchers and postgraduate students of theoretical and mathematical physics. Full Product DetailsAuthor: R. Gielerak , etc.Publisher: Kluwer Academic Publishers Imprint: Kluwer Academic Publishers Volume: v. 13 Weight: 0.655kg ISBN: 9780792319245ISBN 10: 0792319249 Pages: 284 Publication Date: 31 August 1992 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsPart 1 Quantum groups: Sugawara construction and the Q-deformation of Virasoro algebra; complex quantum groups and their dual Hopf algebras; external projector and universal R-matrix for quantized contragredient lie (super)algebras; quantum deformations of D=4 Poincare algebra; Quantum Group strecture and Covariant differential calculus on symmetric algebras corresponding to commutation factors on Zn; remarks on the use of R-matrices; construction of some Hopf algebras; realifications of complex quantum groups. Part 2 Non commutative differential geometry: on multigraded differential calculus; Yang Mills fields and symmetry breaking - from lie super-algebras to non commutative geometry; differential and integral calculus on the quantum C-plane. Part 3 Integrable systems: rigorous approach to Abelian Chern-simons theory; the conformal block structure of perturbation theory in two dimensions; an alternative dynamical description of quantum systems; on the solutions of the Yang-Baxter equations; state sum invariants of compact 3-manifolds with boundary and 6j-symbols. Part 4 Miscellaneous: product of states; quantum measurements and information theory; a comment on a 3-dimensional euclidean supersymmetry; chiral nets and modular methods; chiral symmetry breaking-rigorous results; on a twister shift in particle and string dynamics; the metric of bures and the geometric phase.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||