|
![]() |
|||
|
||||
OverviewNuclear quantum effects such as zero-point energy conservation, tunnelling, non-adiabaticity and coherence play an important role in many complex chemical systems of technological and biological importance. Zero-point energy differences are key to understanding the experimentally-observed differences in the thermodynamic properties of normal and heavy water, while both theoretical and experimental work has highlighted the role of quantum tunnelling in enzyme-catalysed hydrogen transfer reactions. Photochemical reactions, involving multiple potential energy surfaces, are implicitly quantum-mechanical in nature, while recent spectroscopic investigations are providing new insight into the role of quantum coherence in the efficient energy transfer processes observed in photosynthetic centres. This volume brings together computational and experimental researchers who are interested in developing and applying methods to use in understanding the role of quantum effects in complex systems. The topics covered in this volume include: Quantum coherence in complex environments Spectroscopic signatures of quantum effects Zero-point energy and tunnelling Emerging opportunities and future directions Full Product DetailsAuthor: Royal Society of ChemistryPublisher: Royal Society of Chemistry Imprint: Royal Society of Chemistry Volume: Volume 221 Weight: 1.001kg ISBN: 9781788016780ISBN 10: 1788016785 Pages: 592 Publication Date: 08 January 2020 Audience: Professional and scholarly , College/higher education , Professional & Vocational , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsReviewsAuthor InformationFaraday Discussions documents a long-established series of Faraday Discussion meetings which provide a unique international forum for the exchange of views and newly acquired results in developing areas of physical chemistry, biophysical chemistry and chemical physics. The papers presented are published in the Faraday Discussion volume together with a record of the discussion contributions made at the meeting. Faraday Discussions therefore provide an important record of current international knowledge and views in the field concerned. The latest (2017) impact factor of Faraday Discussions is 3.427. Tab Content 6Author Website:Countries AvailableAll regions |