|
|
|||
|
||||
OverviewProper Orthogonal Decomposition Methods for Partial Differential Equations evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R&D problems. Full Product DetailsAuthor: Zhendong Luo (North China Electric Power University, Beijing, China) , Goong Chen (Professor of Mathematics and Aerospace Engineering, Texas A & M University) , Zhendong Luo (North China Electric Power University, Beijing, China) , Zhendong Luo (North China Electric Power University, Beijing, China)Publisher: Elsevier Science Publishing Co Inc Imprint: Academic Press Inc Weight: 0.450kg ISBN: 9780128167984ISBN 10: 012816798 Pages: 278 Publication Date: 03 December 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsThis book details the application of the Proper Orthogonal Decomposition (POD) to instationary problems whose spatial semidiscretization is done either by Finite Difference (FD), Finite Element (FE) or Finite Volume (FV) methods. These three discretization methods correspond to the 3 main chapters of the book. --zbMATH Author InformationZhendong Luo is Professor of Mathematics at North China Electric Power University, Beijing, China. Luo is heavily involved in the areas of Optimizing Numerical Methods of PDEs; Finite Element Methods; Finite Difference Scheme; Finite Volume Element Methods; Spectral-Finite Methods; and Computational Fluid Dynamics. For the last 12 years, Luo has worked mainly on Reduced Order Numerical Methods based on Proper Orthogonal Decomposition Technique for Time Dependent Partial Differential Equations. Tab Content 6Author Website:Countries AvailableAll regions |
||||