|
![]() |
|||
|
||||
Overviewmost polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e-; namely, u(*, t) = V(t)uoU* Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E* (R)E), locally given by 00 K(x,y; t) = L>-IAk(~k (R) 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for- malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op. Full Product DetailsAuthor: Stig I. Andersson , Michel L. LapidusPublisher: Birkhauser Verlag AG Imprint: Birkhauser Verlag AG Edition: 1997 ed. Dimensions: Width: 15.50cm , Height: 1.20cm , Length: 23.50cm Weight: 1.050kg ISBN: 9783764357559ISBN 10: 376435755 Pages: 197 Publication Date: 01 October 1997 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsSpectral Geometry: An Introduction and Background Material for this Volume.- Geometry Detected by a Finite Part of the Spectrum.- Spectral Geometry on Nilmanifolds.- Upper Bounds for the Poincaré Metric Near a Fractal Boundary.- Construction de Variétés Isospectrales du Théorème de T. Sunada.- Inverse spectral theory for Riemannian foliations and curvature theory.- Computer Graphics and the Eigenfunctions for the Koch Snowflake Drum.- Inverse Spectral Geometry.- Inverse Spectral Geometry on Riemann Surfaces.- Quantum Ergodicity.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |