The Probability and Statistics for Engineering and the Sciences

Author:   Jay L. Devore
Publisher:   Cengage Learning, Inc
Edition:   9th Revised edition
ISBN:  

9781305251809


Pages:   768
Publication Date:   01 January 2015
Format:   Hardback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $662.51 Quantity:  
Add to Cart

Share |

The Probability and Statistics for Engineering and the Sciences


Add your own review!

Overview

Full Product Details

Author:   Jay L. Devore
Publisher:   Cengage Learning, Inc
Imprint:   CENGAGE Learning Custom Publishing
Edition:   9th Revised edition
Dimensions:   Width: 21.00cm , Height: 3.30cm , Length: 26.00cm
Weight:   1.542kg
ISBN:  

9781305251809


ISBN 10:   1305251806
Pages:   768
Publication Date:   01 January 2015
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Hardback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

1. OVERVIEW AND DESCRIPTIVE STATISTICS. Populations, Samples, and Processes. Pictorial and Tabular Methods in Descriptive Statistics. Measures of Location. Measures of Variability. 2. PROBABILITY. Sample Spaces and Events. Axioms, Interpretations, and Properties of Probability. Counting Techniques. Conditional Probability. Independence. 3. DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Random Variables. Probability Distributions for Discrete Random Variables. Expected Values. The Binomial Probability Distribution. Hypergeometric and Negative Binomial Distributions. The Poisson Probability Distribution. 4. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Probability Density Functions. Cumulative Distribution Functions and Expected Values. The Normal Distribution. The Exponential and Gamma Distributions. Other Continuous Distributions. Probability Plots. 5. JOINT PROBABILITY DISTRIBUTIONS AND RANDOM SAMPLES. Jointly Distributed Random Variables. Expected Values, Covariance, and Correlation. Statistics and Their Distributions. The Distribution of the Sample Mean. The Distribution of a Linear Combination. 6. POINT ESTIMATION. Some General Concepts of Point Estimation. Methods of Point Estimation. 7. STATISTICAL INTERVALS BASED ON A SINGLE SAMPLE. Basic Properties of Confidence Intervals. Large-Sample Confidence Intervals for a Population Mean and Proportion. Intervals Based on a Normal Population Distribution. Confidence Intervals for the Variance and Standard Deviation of a Normal Population. 8. TESTS OF HYPOTHESIS BASED ON A SINGLE SAMPLE. Hypotheses and Test Procedures. z Tests for Hypotheses About a Population Mean. The One-Sample t Test. Tests Concerning a Population Proportion. Further Aspects of Hypothesis Testing. 9. INFERENCES BASED ON TWO SAMPLES. z Tests and Confidence Intervals for a Difference between Two Population Means. The Two-Sample t Test and Confidence Interval. Analysis of Paired Data. Inferences Concerning a Difference between Population Proportions. Inferences Concerning Two Population Variances. 10. THE ANALYSIS OF VARIANCE. Single-Factor ANOVA. Multiple Comparisons in ANOVA. More on Single-Factor ANOVA. 11. MULTIFACTOR ANALYSIS OF VARIANCE. Two-Factor ANOVA with Kij = 1. Two-Factor ANOVA with Kij > 1. Three-Factor ANOVA 11. 4 2p Factorial Experiments. 12. SIMPLE LINEAR REGRESSION AND CORRELATION. The Simple Linear Regression Model. Estimating Model Parameters. Inferences About the Slope Parameter ss1. Inferences Concerning Y*x* and the Prediction of Future Y Values. Correlation. 13. NONLINEAR AND MULTIPLE REGRESSION. Assessing Model Adequacy. Regression with Transformed Variables. Polynomial Regression. Multiple Regression Analysis. Other Issues in Multiple Regression. 14. GOODNESS-OF-FIT TESTS AND CATEGORICAL DATA ANALYSIS. Goodness-of-Fit Tests When Category Probabilities Are Completely Specified. Goodness-of-Fit Tests for Composite Hypotheses. Two-Way Contingency Tables 15. DISTRIBUTION-FREE PROCEDURES. The Wilcoxon Signed-Rank Test. The Wilcoxon Rank-Sum Test. Distribution-Free Confidence Intervals. Distribution-Free ANOVA. 16. QUALITY CONTROL METHODS. General Comments on Control Charts. Control Charts for Process Location. Control Charts for Process Variation. Control Charts for Attributes. CUSUM Procedures. Acceptance Sampling.

Reviews

The strengths are the material coverage (i.e. topics covered) and the engineering focus. I would describe this text as a reliable classic.


This text has a great number of examples and exercises that are of high quality. Students enjoy doing the real world problems. I believe this is the text's greatest strength. The strengths are the material coverage (i.e. topics covered) and the engineering focus. I would describe this text as a reliable classic.


The strengths are the material coverage (i.e. topics covered) and the engineering focus. I would describe this text as a reliable classic. This text has a great number of examples and exercises that are of high quality. Students enjoy doing the real world problems. I believe this is the text's greatest strength.


Author Information

Jay Devore is Professor Emeritus of Statistics at California Polytechnic State University. He earned his undergraduate degree in Engineering Science from the University of California at Berkeley, spent a year at the University of Sheffield in England, and finished his Ph.D. in statistics at Stanford University. Jay previously taught at the University of Florida and at Oberlin College and has had visiting appointments at Stanford, Harvard, the University of Washington, New York University, and Columbia University. From 1998 to 2006, he served as Chair of the Statistics Department. In addition to this book, Jay has written several widely used engineering statistics texts and a book in applied mathematical statistics. He recently coauthored a text in probability and stochastic processes. He is the recipient of a distinguished teaching award from Cal Poly, is a Fellow of the American Statistical Association , and has served several terms as an Associate Editor of the ""Journal of the American Statistical Association."" In his spare time, he enjoys reading, cooking and eating good food, tennis, and travel to faraway places. He is especially proud of his wife, Carol, a retired elementary school teacher, his daughter Allison, who has held several high-level positions in nonprofit organizations in Boston and New York City, and his daughter Teresa, an ESL teacher in New York City.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List