Probability and Statistics for Data Science: Math + R + Data

Author:   Norman Matloff
Publisher:   Taylor & Francis Ltd
ISBN:  

9780367260934


Pages:   412
Publication Date:   25 June 2019
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $347.00 Quantity:  
Add to Cart

Share |

Probability and Statistics for Data Science: Math + R + Data


Add your own review!

Overview

Probability and Statistics for Data Science: Math + R + Data covers ""math stat""—distributions, expected value, estimation etc.—but takes the phrase ""Data Science"" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the ""how"" and ""why"" of statistics, and to ""see the big picture."" * Not ""theorem/proof""-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.

Full Product Details

Author:   Norman Matloff
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Weight:   0.848kg
ISBN:  

9780367260934


ISBN 10:   036726093
Pages:   412
Publication Date:   25 June 2019
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

I quite like this book. I believe that the book describes itself quite well when it says: Mathematically correct yet highly intuitive...This book would be great for a class that one takes before one takes my statistical learning class. I often run into beginning graduate Data Science students whose background is not math (e.g., CS or Business) and they are not ready...The book fills an important niche, in that it provides a self-contained introduction to material that is useful for a higher-level statistical learning course. I think that it compares well with competing books, particularly in that it takes a more Data Science and example driven approach than more classical books. ~Randy Paffenroth, Worchester Polytechnic Institute


Author Information

Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List