Polymer Processing: Principles and Design

Author:   Donald G. Baird (Virginia Polytechnic Institute and State University, Blacksburg, VA) ,  Dimitris I. Collias (Procter & Gamble Co., Cincinnati, OH)
Publisher:   John Wiley & Sons Inc
Edition:   2nd edition
ISBN:  

9780470930588


Pages:   416
Publication Date:   15 April 2014
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $258.95 Quantity:  
Add to Cart

Share |

Polymer Processing: Principles and Design


Add your own review!

Overview

Full Product Details

Author:   Donald G. Baird (Virginia Polytechnic Institute and State University, Blacksburg, VA) ,  Dimitris I. Collias (Procter & Gamble Co., Cincinnati, OH)
Publisher:   John Wiley & Sons Inc
Imprint:   John Wiley & Sons Inc
Edition:   2nd edition
Dimensions:   Width: 22.10cm , Height: 2.80cm , Length: 27.90cm
Weight:   1.202kg
ISBN:  

9780470930588


ISBN 10:   0470930586
Pages:   416
Publication Date:   15 April 2014
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Preface xi Preface to the First Edition xiii Acknowledgments xv 1 Importance of Process Design 1 1.1 Classification of Polymer Processes, 1 1.2 Film Blowing: Case Study, 5 1.3 Basics of Polymer Process Design, 7 2 Isothermal Flow of Purely Viscous Non-Newtonian Fluids 9 Design Problem I Design of a Blow Molding Die, 9 2.1 Viscous Behavior of Polymer Melts, 10 2.2 One-Dimensional Isothermal Flows, 13 2.2.1 Flow Through an Annular Die, 14 2.2.2 Flow in a Wire Coating Die, 17 2.3 Equations of Change for Isothermal Systems, 19 2.4 Useful Approximations, 26 2.5 Solution to Design Problem I, 27 2.5.1 Lubrication Approximation Solution, 27 2.5.2 Computer Solution, 29 3 Viscoelastic Response of Polymeric Fluids and Fiber Suspensions 37 Design Problem II Design of a Parison Die for a Viscoelastic Fluid, 37 3.1 Material Functions for Viscoelastic Fluids, 38 3.1.1 Kinematics, 38 3.1.2 Stress Tensor Components, 39 3.1.3 Material Functions for Shear Flow, 40 3.1.4 Shear-Free Flow Material Functions, 43 3.2 Nonlinear Constitutive Equations, 44 3.2.1 Description of Several Models, 44 3.2.2 Fiber Suspensions, 52 3.3 Rheometry, 55 3.3.1 Shear Flow Measurements, 56 3.3.2 Shear-Free Flow Measurements, 58 3.4 Useful Relations for Material Functions, 60 3.4.1 Effect of Molecular Weight, 60 3.4.2 Relations Between Linear Viscoelastic Properties and Viscometric Functions, 61 3.4.3 Branching, 61 3.5 Rheological Measurements and Polymer Processability, 62 3.6 Solution to Design Problem II, 64 4 Diffusion and Mass Transfer 73 Design Problem III Design of a Dry-Spinning System, 73 4.1 Mass Transfer Fundamentals, 74 4.1.1 Definitions of Concentrations and Velocities, 74 4.1.2 Fluxes and Their Relationships, 76 4.1.3 Fick’s First Law of Diffusion, 76 4.1.4 Microscopic Material Balance, 78 4.1.5 Similarity with Heat Transfer: Simple Applications, 80 4.2 Diffusivity, Solubility, and Permeability in Polymer Systems, 84 4.2.1 Diffusivity and Solubility of Simple Gases, 84 4.2.2 Permeability of Simple Gases and Permachor, 87 4.2.3 Moisture Sorption and Diffusion, 90 4.2.4 Permeation of Higher-Activity Permeants, 90 4.2.5 Polymer–Polymer Diffusion, 93 4.2.6 Measurement Techniques and Their Mathematics, 94 4.3 Non-Fickian Transport, 95 4.4 Mass Transfer Coefficients, 96 4.4.1 Definitions, 96 4.4.2 Analogies Between Heat and Mass Transfer, 97 4.5 Solution to Design Problem III, 99 5 Nonisothermal Aspects of Polymer Processing 111 Design Problem IV Casting of Polypropylene Film, 111 5.1 Temperature Effects on Rheological Properties, 111 5.2 The Energy Equation, 113 5.2.1 Shell Energy Balances, 113 5.2.2 Equation of Thermal Energy, 117 5.3 Thermal Transport Properties, 120 5.3.1 Homogeneous Polymer Systems, 120 5.3.2 Thermal Properties of Composite Systems, 123 5.4 Heating and Cooling of Nondeforming Polymeric Materials, 124 5.4.1 Transient Heat Conduction in Nondeforming Systems, 125 5.4.2 Heat Transfer Coefficients, 130 5.4.3 Radiation Heat Transfer, 132 5.5 Crystallization, Morphology, and Orientation, 135 5.5.1 Crystallization in the Quiescent State, 136 5.5.2 Other Factors Affecting Crystallization, 142 5.5.3 Polymer Molecular Orientation, 143 5.6 Solution to Design Problem IV, 145 6 Mixing 153 Design Problem V Design of a Multilayered Extrusion Die, 153 6.1 Description of Mixing, 154 6.2 Characterization of the State of Mixture, 156 6.2.1 Statistical Description of Mixing, 157 6.2.2 Scale and Intensity of Segregation, 161 6.2.3 Mixing Measurement Techniques, 163 6.3 Striation Thickness and Laminar Mixing, 164 6.3.1 Striation Thickness Reduction from Geometrical Arguments, 164 6.3.2 Striation Thickness Reduction from Kinematical Arguments, 169 6.3.3 Laminar Mixing in Simple Geometries, 171 6.4 Residence Time and Strain Distributions, 174 6.4.1 Residence Time Distribution, 174 6.4.2 Strain Distribution, 177 6.5 Dispersive Mixing, 180 6.5.1 Dispersion of Agglomerates, 180 6.5.2 Liquid–Liquid Dispersion, 182 6.6 Thermodynamics of Mixing, 188 6.7 Chaotic Mixing, 189 6.8 Solution to Design Problem V, 191 7 Extrusion Dies 201 Design Problem VI Coextrusion Blow Molding Die, 201 7.1 Extrudate Nonuniformities, 202 7.2 Viscoelastic Phenomena, 203 7.2.1 Flow Behavior in Contractions, 203 7.2.2 Extrusion Instabilities, 203 7.2.3 Die Swell, 207 7.3 Sheet and Film Dies, 212 7.4 Annular Dies, 216 7.4.1 Center-Fed Annular Dies, 216 7.4.2 Side-Fed and Spiral Mandrel Dies, 217 7.4.3 Wire Coating Dies, 217 7.5 Profile Extrusion Dies, 220 7.6 Multiple Layer Extrusion, 222 7.6.1 General Considerations, 222 7.6.2 Design Equations, 224 7.6.3 Flow Instabilities in Multiple Layer Flow, 227 7.7 Solution to Design Problem VI, 228 8 Extruders 235 Design Problem VII Design of a Devolatilization Section for a Single-Screw Extruder, 235 8.1 Description of Extruders, 235 8.1.1 Single-Screw Extruders, 237 8.1.2 Twin-Screw Extruders, 238 8.2 Hopper Design, 239 8.3 Plasticating Single-Screw Extruders, 242 8.3.1 Solids Transport, 242 8.3.2 Delay and Melting Zones, 246 8.3.3 Metering Section, 250 8.4 Twin-Screw Extruders, 253 8.4.1 Self-wiping Corotating Twin-Screw Extruders, 253 8.4.2 Intermeshing Counterrotating Extruders, 256 8.5 Mixing, Devolatilization, and Reactions in Extruders, 258 8.5.1 Mixing, 258 8.5.2 Devolatilization in Extruders, 262 8.5.3 Reactive Extrusion, 264 8.6 Solution to Design Problem VII, 265 8.6.1 Dimensional Analysis, 265 8.6.2 Diffusion Theory, 267 9 Postdie Processing 275 Design Problem VIII Design of a Film Blowing Process for Garbage Bags, 275 9.1 Fiber Spinning, 276 9.1.1 Isothermal Newtonian Model, 278 9.1.2 Nonisothermal Newtonian Model, 281 9.1.3 Isothermal Viscoelastic Model, 285 9.1.4 High-Speed Spinning and Structure Formation, 287 9.1.5 Instabilities in Fiber Spinning, 290 9.2 Film Casting and Stretching, 293 9.2.1 Film Casting, 293 9.2.2 Stability of Film Casting, 296 9.2.3 Film Stretching and Properties, 297 9.3 Film Blowing, 297 9.3.1 Isothermal Newtonian Model, 299 9.3.2 Nonisothermal Newtonian Model, 302 9.3.3 Nonisothermal Non-Newtonian Model, 303 9.3.4 Biaxial Stretching and Mechanical Properties, 304 9.3.5 Stability of Film Blowing, 304 9.3.6 Scaleup, 305 9.4 Solution to Design Problem VIII, 305 10 Molding and Forming 311 Design Problem IX Design of a Compression Molding Process, 311 10.1 Injection Molding, 311 10.1.1 General Aspects of Injection Molding, 311 10.1.2 Simulation of Injection Molding, 315 10.1.3 Microinjection Molding, 318 10.2 Compression Molding, 319 10.2.1 General Aspects of Compression Molding, 319 10.2.2 Simulation of Compression Molding, 320 10.3 Thermoforming, 322 10.3.1 General Aspects of Thermoforming, 322 10.3.2 Modeling of Thermoforming, 324 10.4 Blow Molding, 328 10.4.1 Technological Aspects of Blow Molding, 328 10.4.2 Simulation of Blow Molding, 330 10.5 Solution to Design Problem IX, 332 11 Process Engineering for Recycled and Renewable Polymers 343 11.1 Life-Cycle Assessment, 343 11.2 Primary Recycling, 348 11.3 Mechanical or Secondary Recycling, 351 11.3.1 Rheology of Mixed Systems, 352 11.3.2 Filtration, 352 11.4 Tertiary or Feedstock Recycling, 354 11.5 Renewable Polymers and Their Processability, 357 11.5.1 Thermal Stability and Processing of Renewable Polymers, 358 Problems, 362 References, 363 Nomenclature 365 Appendix A Rheological Data for Several Polymer Melts 373 Appendix B Physical Properties and Friction Coefficients for Some Common Polymers in the Bulk State 379 Appendix C Thermal Properties of Materials 381 Appendix D Conversion Table 385 Index 387

Reviews

Author Information

DONALD G. BAIRD, PhD, is the Alexander F. Giacco and Harry C. Wyatt Professor of Chemical Engineering at Virginia Tech. His research centers on the use of fundamental non-Newtonian fluid mechanics to develop improved processing operations for polymers and polymer composites. Among his many honors, the Society of Plastics Engineers has awarded him the International Award, the International Award for Research, and the International Award for Education. A holder of seven patents, Dr. Baird has published some 300 refereed publications. DIMITRIS I. COLLIAS, PhD, is with the corporate R&D department of the Procter & Gamble Co. in Cincinnati, Ohio. He earned his PhD degree from Princeton University. With twenty years of industry experience in polymers, polymer processing, packaging, paper, and activated carbon, his current research focuses on developing renewable materials and processes for key products in the company’s portfolio. Dr. Collias holds fifty-four issued U.S. patents and is inventor or co-inventor in more than thirty U.S. patent applications.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List