Platform and Model Design for Responsible AI: Design and build resilient, private, fair, and transparent machine learning models

Author:   Amita Kapoor ,  Sharmistha Chatterjee
Publisher:   Packt Publishing Limited
ISBN:  

9781803237077


Pages:   516
Publication Date:   28 April 2023
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $145.17 Quantity:  
Add to Cart

Share |

Platform and Model Design for Responsible AI: Design and build resilient, private, fair, and transparent machine learning models


Add your own review!

Overview

Craft ethical AI projects with privacy, fairness, and risk assessment features for scalable and distributed systems while maintaining explainability and sustainability Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn risk assessment for machine learning frameworks in a global landscape Discover patterns for next-generation AI ecosystems for successful product design Make explainable predictions for privacy and fairness-enabled ML training Book DescriptionAI algorithms are ubiquitous and used for tasks, from recruiting to deciding who will get a loan. With such widespread use of AI in the decision-making process, it’s necessary to build an explainable, responsible, transparent, and trustworthy AI-enabled system. With Platform and Model Design for Responsible AI, you’ll be able to make existing black box models transparent. You’ll be able to identify and eliminate bias in your models, deal with uncertainty arising from both data and model limitations, and provide a responsible AI solution. You’ll start by designing ethical models for traditional and deep learning ML models, as well as deploying them in a sustainable production setup. After that, you’ll learn how to set up data pipelines, validate datasets, and set up component microservices in a secure and private way in any cloud-agnostic framework. You’ll then build a fair and private ML model with proper constraints, tune the hyperparameters, and evaluate the model metrics. By the end of this book, you’ll know the best practices to comply with data privacy and ethics laws, in addition to the techniques needed for data anonymization. You’ll be able to develop models with explainability, store them in feature stores, and handle uncertainty in model predictions.What you will learn Understand the threats and risks involved in ML models Discover varying levels of risk mitigation strategies and risk tiering tools Apply traditional and deep learning optimization techniques efficiently Build auditable and interpretable ML models and feature stores Understand the concept of uncertainty and explore model explainability tools Develop models for different clouds including AWS, Azure, and GCP Explore ML orchestration tools such as Kubeflow and Vertex AI Incorporate privacy and fairness in ML models from design to deployment Who this book is forThis book is for experienced machine learning professionals looking to understand the risks and leakages of ML models and frameworks, and learn to develop and use reusable components to reduce effort and cost in setting up and maintaining the AI ecosystem.

Full Product Details

Author:   Amita Kapoor ,  Sharmistha Chatterjee
Publisher:   Packt Publishing Limited
Imprint:   Packt Publishing Limited
ISBN:  

9781803237077


ISBN 10:   1803237074
Pages:   516
Publication Date:   28 April 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Table of Contents Risks and Attacks on ML Models The Emergence of Risk-Averse Methodologies and Frameworks Regulations and Policies Surrounding Trustworthy AI Privacy Management in Big Data and Model Design Pipelines ML Pipeline, Model Evaluation and Handling Uncertainty Hyperparameter Tuning, MLOPS, and AutoML Fairness Notions and Fain Data Generation Fairness in Model Optimization Model Explainability Ethics and Model Governance The Ethics of Model Adaptability Building Sustainable, Enterprise-Grade AI Platforms Sustainable Model Life Cycle Management, Feature Stores, and Model Calibration Industry-Wide Use-cases

Reviews

Author Information

Amita Kapoor is an accomplished AI consultant and educator, with over 25 years of experience. She has received international recognition for her work, including the DAAD fellowship and the Intel Developer Mesh AI Innovator Award. She is a highly respected scholar in her field, with over 100 research papers and several best-selling books on deep learning and AI. After teaching for 25 years at the University of Delhi, Amita took early retirement and turned her focus to democratizing AI education. She currently serves as a member of the Board of Directors for the non-profit Neuromatch Academy, fostering greater accessibility to knowledge and resources in the field. Following her retirement, Amita also founded NePeur, a company that provides data analytics and AI consultancy services. In addition, she shares her expertise with a global audience by teaching online classes on data science and AI at the University of Oxford. Sharmistha Chatterjee is an evangelist in the field of machine learning (ML) and cloud applications, currently working in the BFSI industry at the Commonwealth Bank of Australia in the data and analytics space. She has worked in Fortune 500 companies, as well as in early-stage start-ups. She became an advocate for responsible AI during her tenure at Publicis Sapient, where she led the digital transformation of clients across industry verticals. She is an international speaker at various tech conferences and a 2X Google Developer Expert in ML and Google Cloud. She has won multiple awards and has been listed in 40 under 40 data scientists by Analytics India Magazine (AIM) and 21 tech trailblazers in 2021 by Google. She has been involved in responsible AI initiatives led by Nasscom and as part of their DeepTech Club.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List