|
![]() |
|||
|
||||
OverviewThe study of clusters is one of the most exciting topics in the rapidly developing field of nanostructured materials. As discussed in this book, nanometer-sized metal particles can be obtained not only by evaporation methods, producing atomic or molecular beams, but also by the chemical synthesis of metal cluster compounds. These have a well-defined stoichiometry and are composed of metal clusters of a given, homogeneous size, each cluster being surrounded by a shell of ligand molecules. Accordingly, the compounds provide excellent model systems for macroscopic assemblies of small metal particles embedded in a dielectric solid. The underlying physical properties are described in terms of a three-dimensional matrix of mutually separated quantum wells. In going from one compound to another, the size and separation of the quantum wells may be varied. In this way, one may study such fundamental properties as the size-induced transition from metallic to molecular behaviour. At the same time, the electronic level structure may be changed in a controlled way, which should confer tunable optical, electrical or magnetic properties. This book summarizes physical experiments performed so far on this challenging new class of materials, as well as the basic aspects of their chemical synthesis. For physicists, chemists and materials scientists with an interest in metal-cluster compounds and their physical properties. Full Product DetailsAuthor: L.J. de JonghPublisher: Springer Imprint: Springer Edition: Softcover reprint of the original 1st ed. 1994 Volume: 18 Weight: 0.516kg ISBN: 9789048143696ISBN 10: 9048143691 Pages: 320 Publication Date: 10 April 2011 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents1. Introduction to Metal Cluster Compounds: From Molecule to Metal!.- 1.1. The impact of cluster-science.- 1.2. Structural characteristics of metal clusters.- 1.3. Electronic energy-level structures.- 1.4. Brief introduction to the physical properties of metal cluster compounds.- 1.5. Conductivity studies.- 1.6. Application of the Anderson-Hubbard approach.- References.- 2. High-Nuclearity Carbonyl Metal Clusters.- 2.1. Introduction.- 2.2. Synthesis and reactivity.- 2.3. Structural aspects.- 2.4. Electron counting for clusters.- References.- 3. Ligand-Stabilized Giant Metal Clusters and Colloids.- 3.1. Strategy for making giant metal clusters.- 3.2. Synthetic and structural examples.- 3.3. Chemical properties.- 3.4. Catalysis.- 3.5. Outlook.- References.- 4. Theory of Electronic Properties of Metal Clusters and Particles.- 4.1. Why are metal particles interesting?.- 4.2. Model Hamiltonians.- 4.3. Traditional quantum chemical methods.- 4.4. Density functional approaches.- 4.5. Summary.- References.- 5. X-Ray Photoelectron Spectroscopy Applied to Pure and Supported Molecular Clusters.- 5.1. Introduction.- 5.2. Generalities of photoemission spectroscopy applied to pure and supported molecular metal clusters.- 5.3. XPS of molecular clusters.- 5.4. XPS of supported molecular clusters.- 5.5. Outlook for the future.- References.- 6. Application of Mössbauer Effect Spectroscopy to Cluster Research.- 6.1. Introduction.- 6.2. Mössbauer Effect Spectroscopy (MES).- 6.3. Our Mössbauer results.- 6.4. 197Au MES on platinum clusters.- 6.5. Conclusions.- References.- 7. Specific Heat Studies on Metal Cluster Compounds.- 7.1. Introduction.- 7.2. The lattice specific heat.- 7.3. The electronic specific heat.- 7.4. Data and discussion.- 7.5. Summary.- References.- 8. NMR in SubmicronParticles.- 8.1. Introduction.- 8.2. Surface and quantum size effects.- 8.3. ESR and NMR — Theory.- 8.4. Naked clusters — Experiment and discussion.- 8.5. Aggregates of metal cluster compounds — Experiment and discussion.- 8.6. Summary.- References.- 9. Magnetic Properties and UV-Visible Spectroscopic Studies of Metal Cluster Compounds.- 9.1. Introduction.- 9.2. Magnetic properties.- 9.3. Electronic (UV-visible-NMR) spectra.- 9.4. Conclusion.- Acknowledgements.- References.- 10. Magnetic Properties of Metal Cluster Compounds.- 10.1. Introduction.- 10.2. Magnetic properties of atoms, metals and clusters.- 10.3. Experiments on metal cluster compounds.- References.- Index of Chemical Compounds.- Index of Subjects.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |