Physical and Computational Aspects of Convective Heat Transfer

Author:   Tuncer Cebeci ,  Peter Bradshaw
Publisher:   Springer-Verlag New York Inc.
Edition:   1st ed. 1984. 2nd printing
ISBN:  

9780387968216


Pages:   487
Publication Date:   11 November 1991
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $145.17 Quantity:  
Add to Cart

Share |

Physical and Computational Aspects of Convective Heat Transfer


Add your own review!

Overview

Full Product Details

Author:   Tuncer Cebeci ,  Peter Bradshaw
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   1st ed. 1984. 2nd printing
Dimensions:   Width: 15.50cm , Height: 2.50cm , Length: 23.50cm
Weight:   0.759kg
ISBN:  

9780387968216


ISBN 10:   0387968210
Pages:   487
Publication Date:   11 November 1991
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Introduction.- 1.1 Momentum Transfer.- 1.2 Heat and Mass Transfer.- 1.3 Relations between Heat and Momentum Transfer.- l.4 Coupled and Uncoupled Flows.- 1.5 Units and Dimensions.- l.6 Outline of the Book.- Problems.- References.- 2 Conservation Equations for Mass, Momentum, and Energy.- 2.1 Continuity Equation.- 2.2 Momentum Equations.- 2.3 Internal Energy and Enthalpy Equations.- 2.4 Conservation Equations for Turbulent Flow.- 2.5 Equations of Motion: Summary.- Problems.- References.- 3 Boundary-Layer Equations.- 3.l Uncoupled Flows.- 3.2 Estimates of Density Fluctuations in Coupled Turbulent Flows.- 3.3 Equations for Coupled Turbulent Flows.- 3.4 Integral Equations.- 3.5 Boundary Conditions.- 3.6 Thin-Shear-Layer Equations: Summary.- Problems.- References.- 4 Uncoupled Laminar Boundary Layers.- 4.1 Similarity Analysis.- 4.2 Two-Dimensional Similar Flows.- 4.3 Two-Dimensional Nonsimilar Flows.- 4.4 Axisymmetric Flows.- 4.5 Wall Jets and Film Cooling.- Problems.- References.- 5 Uncoupled Laminar Duct Flows.- 5.1 Fully Developed Duct Flow.- 5.2 Thermal Entry Length for a Fully Developed Velocity Field.- 5.3 Hydrodynamic and Thermal Entry Lengths.- Problems.- References.- 6 Uncoupled Turbulent Boundary Layers.- 6.1 Composite Nature of a Turbulent Boundary Layer.- 6.2 The Inner Layer.- 6.3 The Outer Layer.- 6.4 The Whole Layer.- 6.5 Two-Dimensional Boundary Layers with Zero Pressure Gradient.- 6.6 Two-Dimensional Flows with Pressure Gradient.- 6.7 Wall Jets and Film Cooling.- Problems.- References.- 7 Uncoupled Turbulent Duct Flows.- 7.1 Fully Developed Duct Flow.- 7.2 Thermal Entry Length for a Fully Developed Velocity Field.- 7.3 Hydrodynamic and Thermal Entry Lengths.- Problems.- References.- 8 Free Shear Flows.- 8.1 Two-Dimensional Laminar Jet.- 8.2 Laminar Mixing Layer between Two Uniform Streams at Different Temperatures.- 8.3 Two-Dimensional Turbulent Jet.- 8.4 Turbulent Mixing Layer between Two Uniform Streams at Different Temperatures.- 8.5 Coupled Flows.- Problems.- References.- 9 Buoyant Flows.- 9.1 Natural-Convection Boundary Layers.- 9.2 Combined Natural- and Forced-Convection Boundary Layers.- 9.3 Wall Jets and Film Heating or Cooling.- 9.4 Natural and Forced Convection in Duct Flows.- 9.5 Natural Convection in Free Shear Flows.- Problems.- References.- 10 Coupled Laminar Boundary Layers.- 10.1 Similar Flows.- 10.2 Nonsimilar Flows.- 10.3 Shock-Wave/Shear-Layer Interaction.- 10.4 A Prescription for Computing Interactive Flows with Shocks.- Problems.- References.- 11 Coupled Turbulent Boundary Layers.- 11.1 Inner-Layer Similarity Analysis for Velocity and Temperature Profiles.- 11.2 Transformations for Coupled Turbulent Flows.- 11.3 Two-Dimensional Boundary Layers with Zero Pressure Gradient.- 11.4 Two-Dimensional Flows with Pressure Gradient.- 11.5 Shock-Wave/Boundary-Layer Interaction.- References.- 12 Coupled Duct Flows.- 12.1 Laminar Flow in a Tube with Uniform Heat Flux.- 12.2 Laminar, Transitional and Turbulent Flow in a Cooled Tube.- References.- 13 Finite-Difference Solution of Boundary-Layer Equations.- 13.1 Review of Numerical Methods for Boundary-Layer Equations.- 13.2 Solution of the Energy Equation for Internal Flows with Fully Developed Velocity Profile.- 13.3 Fortran Program for Internal Laminar and Turbulent Flows with Fully Developed Velocity Profile.- 13.4 Solution of Mass, Momentum, and Energy Equations for Boundary-Layer Flows.- 13.5 Fortran Program for Coupled Boundary-Layer Flows.- References.- 14 Applications of a Computer Program to Heat-Transfer Problems.- 14.1 Forced and Free Convection between Two Vertical Parallel Plates.- 14.2 Wall Jet and Film Heating.- 14.3 Turbulent Free Jet.- 14.4 Mixing Layer between Two Uniform Streams at Different Temperatures.- References.- Appendix A Conversion Factors.- Appendix B Physical Properties of Gases, Liquids, Liquid Metals, and Metals.- Appendix C Gamma, Beta and Incomplete Beta Functions.- Appendix D Fortran Program for Head’s Method.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List