Philosophy of Mathematics

Author:   A. Paseau
Publisher:   Taylor & Francis Ltd
ISBN:  

9781138886667


Pages:   1731
Publication Date:   24 February 2017
Format:   Mixed media product
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $630.00 Quantity:  
Add to Cart

Share |

Philosophy of Mathematics


Add your own review!

Overview

Full Product Details

Author:   A. Paseau
Publisher:   Taylor & Francis Ltd
Imprint:   Routledge
Weight:   3.447kg
ISBN:  

9781138886667


ISBN 10:   1138886661
Pages:   1731
Publication Date:   24 February 2017
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Mixed media product
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Volume I: Historical Readings in the Philosophy of Mathematics 1. Plato (early 4th century BC). From E. Hamilton & H. Cairns (eds. 1963 corrected reprint., Bollingen Foundation):Meno 80b-86b, W.K.C. Guthrie (trans.), pages 363-371 2. Plato (early 4th century BC). From B. Jowett (ed.), The Dialogues of Plato (1953), Oxford University Press: Phaedo 72e-77d, B. Jowett (trans.), pages 425-431 3. Plato (early 4th century BC). From John Cooper (ed.), Plato: Complete Works (1997), (trans.) G.M.A. Grube & C.D.C. Reeve, Hackett: Republic Book 6, 507a-511e, pages 1126-1133. 4. Plato (early 4th century BC). From John Cooper (ed.), Plato: Complete Works (1997), (trans.) G.M.A. Grube & C.D.C. Reeve, Hackett: Republic Book 7, 525a-527c, pages 1140-1145. 5. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Metaphysics Book B, part ii, pages 1574-1575. 6. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Metaphysics Book E, part I, page 1619. 7. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Metaphysics Book Z, part x-xi, pages 1633-1637. 8. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Metaphysics Book Th , part ix, page 1660. 9. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Metaphysics Book I, parts i-ii, pages 1662-1665. 10. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Metaphysics Book K, parts ii-iv and vii, pages 1675-1677 and 1680-1681. 11. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Metaphysics Book M, parts i-iii, pages 1701-1705 12. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), (trans.) R.P. Hardie and R.K. Gaye, Princeton University Press.Physics, Book B, part ii, pages 330-332. 13. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), Princeton University Press:Physics, Book C, parts vi-viii-8, pages 351-354. 14. Aristotle (mid-4th century BC). From Jonathan Barnes (ed.), The Complete Works of Aristotle (1984), (trans.) J.A. Smith, Princeton University Press: De Anima (On the Soul), Book C, parts vi-viii, pages 684-687. 15. Rene Descartes (1637) Part 2 of Discourse on Method, J. Cottingham, R. Stoothoff and D. Murdoch (trans. & eds.) Descartes: Selected Philosophical Writings, pages 25-31. 16. John Locke (1689), from An Essay Concerning Human Understanding, R.S. Woolhouse (ed.) (1997), Penguin: Book I, Chapter II, pages 59-75. 17. John Locke (1689), from An Essay Concerning Human Understanding, R.S. Woolhouse (ed.) (1997), Penguin: Book IV, Chapter II, pages 471-479. 18. George Berkeley (1710), Treatise Concerning the Principles of Human Knowledge, 118-134, pages 131-139, D. M. Clarke (ed) (2008), Cambridge University Press. 19. Gottfried Leibniz (1716), from R.S. Woolhouse and R. Francks (trans. and eds.) G.W. Leibniz: Philosophical Texts (1998), Oxford University Press. Sections 23 to 25 of Reply to Bayle's Note L, pages 252-253. 20. Gottfried Leibniz (1714), from R.S. Woolhouse and R. Francks (trans. and eds.) G.W. Leibniz: Philosophical Texts (1998), Oxford University Press. Sections 28 to 38 of Monadology, pages 271-273. 21. Gottfried Leibniz (1685), from P. Wiener (ed.) Leibniz: Selections (1951), Charles Scribner's Sons. The Art of Discovery pages 50-58. 22. D'Alembert, J. L. (1751), Preliminary Discourse to the Encyclopedia of Diderot (1995), R.N.Schwab (transl), University of Chicago Press, pages 16-29. 23. Immanuel Kant (1787), from N. Kemp Smith (transl. and ed.) Critique of Pure Reason (B) (1929), Macmillan. Introduction and Transcendental Aesthetic, B1-73, pages 41-91. 24. Immanuel Kant (1783), from P. Carus & J. W. Ellington Prolegomena to any future metaphysics that will be able to come forward as science (1977), Hackett. Sections 6-13 (inc. Remarks I and II), pages 25-33. 25. John Stuart Mill (1843), from A System of Logic, volume 7 of Collected Works of John Stuart Mill, J.M. Robson (ed.) (1973), University of Toronto Press: Book II, Chapter VI, pages 252-261. 26. John Stuart Mill (1843), from A System of Logic, volume 7 of Collected Works of John Stuart Mill, J.M. Robson (ed.) (1973), University of Toronto Press: Book III, Chapter XXIV, pages 604-621. 27. Richard Dedekind (1888), On the nature and meaning of numbers in Essays on the Theory of Numbers (1963), pages 31-115, transl. by W.W. Beman, Dover. 28. Albert Einstein (1921), Geometrie und Erfahrung , transl. by S. Bargmann as Geometry and Experience and repr. in his Ideas and Opinions (1954), Condor, pp. 232-46. Volume II Early 20th Century Philosophies: Logicism, Logical Empiricism, Intuitionism and Formalism Logicism and its critics 29. Gottlob Frege (1884), Foundations of Arithmetic, transl. by J. Austin (Blackwell, 1950), sections 55-109, pages 67e-119e. 30. Gottlob Frege (1893), from The Basic Laws of Arithmetic, transl. and ed. by P. A. Ebert & M. Rossberg with C. Wright, Oxford University Press. Introduction and Part I (sections 1 to 52), pp. 1-69 and Appendices to Volume I, pp. 239-251. 31. Bertrand Russell's letter to Frege and Frege's reply to Russell, transl. by B. Woodward, in J. van Heijenoort (ed.), From Frege to Goedel, a source book in Mathematical Logic 1879 -1931, Harvard UP, pp 124-128. 32. Alfred North Whitehead & Bertrand Russell, B. (1910-13), Introduction to the 2nd ed. and Introduction, Principia Mathematica, pp. xii-xlvi and 1-84 of Principia Mathematica to *56 (1997), Cambridge University Press. 33. Henri Poincare (1906), Mathematics and Logic III transl. by G.B. Halsted & W. Ewald and repr. in Ewald (1996), pp. 1052-1071. 34. Bertrand Russell (1919), Introduction to Mathematical Philosophy , Spokesman, Chapters 1 (pp.1-10), 2 (pp.11-19), 3 (pp.20-28), 12 (pp.117-130), 13 (pp.131-143), and 18 (pp.194-206). 35. Crispin Wright (1997), On the Philosophical Significance of Frege's Theorem , in R.G. Heck (ed.), Language, Thought and Logic: Essays in Honour of Michael Dummett. Pages 201-244. 36. George Boolos (1997), Is Hume's Principle Analytic? , in R.G. Heck (ed.), Language, Thought and Logic: Essays in Honour of Michael Dummett. Pages 245-261. Intuitionism 37. L.E.J. Brouwer, On the significance of the principle of excluded middle in mathematics, especially in function theory incl. Addenda & Corrigenda, transl. by S. Bauer-Mengelberg, repr. in van Heijenoort (1967), pp. 335-45. 38. Arend Heyting, (1931), The intuitionist foundations of mathematics (1931), transl. by E. Putnam & G.J. Massey and repr. in P. Benacerraf & H. Putnam (eds), Philosophy of Mathematics: selected readings 1983, Cambridge University Press, pp 52-61. 39. Arend Heyting (1956), Disputation , in P. Benacerraf & H. Putnam (eds), Philosophy of Mathematics: selected readings 1983, Cambridge University Press, pp. 66-76. 40. Michael Dummett (1973), The philosophical basis of intuitionistic logic , in his Truth and Other Enigmas (Duckworth, 1978), pages 215-47. Formalism 41. David Hilbert (1925), On the infinite , trans. by S. Bauer-Mengelberg, in van Heijenoort (1967), pp. 367-392. 42. William Tait (1981), Finitism , Journal of Philosophy 77, pp. 524-46. Logical Empiricism 43. A.J. Ayer (1936), Chapter IV of Language, Truth and Logic, Penguin, pages 64-83 44. Moritz Schlick (1925), 7 (pp.31-39) and 38 (pp.348-358) of General Theory of Knowledge (1974), transl. by A. E. Blumberg, Springer-Verlag. 45. Rudolf Carnap (1950), Empiricism, Semantics and Ontology , repr. in Benacerraf & Putnam (1983), pp. 241-257. Volume III Contemporary Foundations, Set Theory and Structuralism 46. Ernst Zermelo (1908), Investigations in the Foundations of Set Theory I trans. by S. Bauer-Mengelberg as and repr. in J. van Heijenoort (ed.) (1967), From Frege to Goedel, Harvard University Press, pp. 199-215. 47. Willard V. Quine (1960), Chapter 7 of Word and Object (pages 233-76), MIT Press. 48. Paul Benacerraf (1965), What Numbers Could Not Be , Philosophical Review 74, pp. 47-73. 49. Paul Benacerraf (1973), Mathematical Truth , The Journal of Philosophy 70, pp. 661-679. 50. Penelope Maddy (1990), Chapter 2 of Realism in Mathematics, pages 36-80, Oxford University Press. 51. Hilary Putnam (1967), Mathematics without Foundations , The Journal of Philosophy 64, pp. 5-22. 52. Geoffrey Hellman (1989), Introduction and Chapter 1 (pp. 1-52) of Mathematics without Numbers, Oxford University Press. 53. Charles Parsons (1990), The Structuralist View of Mathematical Objects , Synthese 84, pp. 303-46. 54. David Lewis (1993), Mathematics is Megethology , in his Philosophical Papers (1998), Cambridge University Press, pp. 203-229. 55. Geoffrey Hellman (2001), Three Varieties of Mathematical Structuralism , Philosophia Mathematica 9, pp. 184-211. 56. Alex Oliver & Timothy Smiley (2006), What are sets and what are they for? , Philosophical Perspectives 20, pp. 123-55. 57. Oystein Linnebo and Richard Pettigrew (2011), Category Theory as an Autonomous Foundation , Philosophia Mathematica 19, pp. 227-54.Volume IV: Proof and Mathematical Justification 58. Kurt Goedel (1931), On formally undecidable propositions of Principia mathematica and related systems I , , transl. by J. van Heijenoort and repr. in vol. I of his Collected Works, S. Feferman et al. (eds), Oxford University Press (1990), pp. 144-195. 59. Kurt Goedel (1964), What is Cantor's Continuum Problem? , repr. in vol. II of his Collected Works, pp. 254-270. 60. George Boolos (1971), The Iterative Conception of Set , Journal of Philosophy 68, pp. 215-231. 61. Imre Lakatos (1976), A renaissance of empiricism in the recent philosophy of mathematics , The British Journal for the Philosophy of Science 27, pp. 201-223. 62. Daniel Isaacson (1987) Arithmetical Truth and Hidden Higher-Order Concepts , in W.D. Hart (ed.), The Philosophy of Mathematics, Oxford University Press (1996), pp. 203-224. 63. Penelope Maddy (1988), Believing the Axioms I , Journal of Symbolic Logic 53, pp. 481-511. 64. Penelope Maddy (1993), Does V = L? , Journal of Symbolic Logic 58, pp. 15-41 65. Don Fallis (1997), The Epistemic Status of Probabilistic Proof , Journal of Philosophy 94, pp. 165-186. 66. Mic Detlefsen (2008), Purity as an Ideal of Proof , in P. Mancosu (ed.), The Philosophy of Mathematical Practice, Oxford University Press, pp. 179-197. 67. Peter Smith (2013), Chapters 44 and 45 (pages 338-66) of An Introduction to Goedel's Incompleteness Theorems (2nd ed.), Cambridge University Press. 68. A.C. Paseau (2015) Mathematical Knowledge without Proof , The British Journal for the Philosophy of Science, pp.1-25. Volume V: The Indispensability Argument 69. Willard V. Quine (1951), Two Dogmas of Empiricism in his From A Logical Point of View, pages 20-46. 70. Willard V. Quine & Nelson Goodman (1947), Steps Towards a Constructive Nominalism , Journal of Symbolic Logic 12, pp. 105-22. 71. Hilary Putnam (1971), Philosophy of Logic, Harper & Row, repr. in his Mathematics, Matter and Method: Philosophical Papers 1, pages 323-357, Cambridge University Press. 72. Hartry Field (1980), Preliminary Remarks and Chapters 1-5 (pp. 1-46) of Science without Numbers, Blackwell. 73. Hartry Field (1984), Is Mathematical Knowledge just Logical Knowledge? , Philosophical Review 93, pp. 509-52. 74. George Boolos (1985), Nominalist Platonism , Philosophical Review 94, pp. 327-44. 75. Elliot Sober (1993), Mathematics and Indispensability , Philosophical Review 102, pp. 35-57. 76. Penelope Maddy (1997), Chapter II.6 of Naturalism in Mathematics, pages 133-157, Oxford University Press. 77. John Burgess & Gideon Rosen (1997), A Subject With No Object, Oxford University Press, pages 3-66 (Introduction) and pages 205-44 (Conclusion). 78. Mark Colyvan (2001), Chapters 4-6 (pp. 67-140) of The Indispensability of Mathematics, Oxford University Press. 79. Alan Baker (2005), Are there genuine mathematical explanations of physical phenomena? , Mind 114, pp. 223-238. 80. A.C. Paseau (2007), Scientific Platonism , in M. Leng, A.C. Paseau & M. Potter (eds), Mathematical Knowledge, Oxford University Press, pp. 123-149.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List