|
![]() |
|||
|
||||
OverviewThe increasing use of metal halide perovskites as light harvesters has stunned the photovoltaic community. The book, Perovskite Solar Cells: Technology and Practices, covers the basics and provides up-to-date research in the field of perovskite photovoltaics—a fast trending branch of the thin film photovoltaic generation. This comprehensive handbook provides a broad and overall picture of perovskite solar cells (PSCs), starting with the history of development and revolution of PSCs. The authors then delve into electron-transporting materials, hole-transporting materials, and lead-free alternatives. An important chapter on tandem solar cells is also included. The chapters discuss how different layers in PSCs are fabricated and function and how their roles are as important as the perovskite layer itself. It explores what has been done and what can probably be done to further improve the performance of this device. Full Product DetailsAuthor: Kunwu Fu , Anita Wing Ho-Baillie , Hemant Kumar Mulmudi , Pham Thi Thu TrangPublisher: Apple Academic Press Inc. Imprint: Apple Academic Press Inc. Weight: 0.140kg ISBN: 9781774634110ISBN 10: 1774634112 Pages: 316 Publication Date: 31 March 2021 Audience: College/higher education , General/trade , Tertiary & Higher Education , General Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsIntroduction to Perovskite Solar Cells. Transporting Layers in Perovskite Solar Cells. Hole-Transporting Layers in Perovskite Solar Cells. Lead-Free Perovskite Solar Cells. Tandem Perovskite Solar Cells and Other Aspects.ReviewsWorking in the field of perovskite materials and devices for applications in optoelectronics, I particularly appreciated the scope and structure of the book, which aims at providing a comprehensive overview on perovskite solar cells. . . . The authors give in their book a quite exhaustive presentation of this particularly dynamic field, including its historical developments and current status and prospects. After a short introduction to the field, the main aspects of device operation are addressed, including the specific features of active and charge extraction layers. Specific considerations are finally presented regarding device stability, lead-free materials, and silicon-perovskite tandem solar cells. Considering the current status of perovskite devices, I am confident that this book will be of great support for students, technicians, engineers and researchers working in the field. --Dr. Johann Boucle, Associate Professor, XLIM UMR 7252, Universite de Limoges/CNRS, France Author InformationKunwu Fu, PhD, is now working in quality engineering in Wieland Metals Singapore. He was a visiting researcher to Professor Michael Gratzel’s research group in EPFL in 2014. He received his PhD in 2016 at the School of Materials Science and Engineering, Nanyang Technological University in Singapore after earning his bachelor degree at the same school in the area of organo-halide perovskite materials in mesoscopic solar cells, studying the morphological and electrical properties of methylammonium lead iodide perovskite in the mesoscopic solar cells. His research focused on understanding the varying nanostructures of perovskite materials and its implications to high-efficiency solar cell device. It also extended to exploring novel small molecule organic materials for hole-transporting layer in high-efficiency perovskite solar cells. Anita Ho-Baillie, PhD, is an Associate Professor at the University of New South Wales (UNSW), Australia. Her research interests in the field of photovoltaics include high-efficiency silicon solar cells, tandem solar cells, perovskite solar cells, integration of photovoltaics for a wide range of applications, and manufacturing cost analysis. She has been leading the perovskite solar cell research group at UNSW since 2013 and in 2016 announced the energy conversion efficiency records for the largest certified monolithic perovskite solar cells. She obtained her PhD at UNSW in 2005. Hemant Kumar Mulmudi, PhD, is currently working as a research fellow at the Research School of Engineering, Australian National University on perovskite solar cells. His interests span from solution processed material synthesis to integration of these materials in functional solar photovoltaic devices and fuels. He received his PhD from the Nanyang Technological University, Singapore, in 2014. Pham Thi Thu Trang, PhD, is currently a lecturer at the University of Engineering and Technology, Vietnam National University, Hanoi. Her research focuses on chemical synthesis of nanostructured materials for dye-sensitized solar cells and perovskite solar cells and device fabrication and characterization. She obtained her PhD degree at Nanyang Technological University (Singapore) and completed her postdocs in CNRS, France. Tab Content 6Author Website:Countries AvailableAll regions |