|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: James Carlson (University of Utah) , Stefan Müller-Stach (Johannes Gutenberg Universität Mainz, Germany) , Chris PetersPublisher: Cambridge University Press Imprint: Cambridge University Press Edition: 2nd Revised edition Dimensions: Width: 15.30cm , Height: 3.20cm , Length: 22.70cm Weight: 0.820kg ISBN: 9781316639566ISBN 10: 1316639568 Pages: 576 Publication Date: 11 August 2017 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsPart I. Basic Theory: 1. Introductory examples; 2. Cohomology of compact Kähler manifolds; 3. Holomorphic invariants and cohomology; 4. Cohomology of manifolds varying in a family; 5. Period maps looked at infinitesimally; Part II. Algebraic Methods: 6. Spectral sequences; 7. Koszul complexes and some applications; 8. Torelli theorems; 9. Normal functions and their applications; 10. Applications to algebraic cycles: Nori's theorem; Part III. Differential Geometric Aspects: 11. Further differential geometric tools; 12. Structure of period domains; 13. Curvature estimates and applications; 14. Harmonic maps and Hodge theory; Part IV. Additional Topics: 15. Hodge structures and algebraic groups; 16. Mumford–Tate domains; 17. Hodge loci and special subvarieties; Appendix A. Projective varieties and complex manifolds; Appendix B. Homology and cohomology; Appendix C. Vector bundles and Chern classes; Appendix D. Lie groups and algebraic groups; References; Index.ReviewsReview of previous edition: 'This book, dedicated to Philip Griffiths, provides an excellent introduction to the study of periods of algebraic integrals and their applications to complex algebraic geometry. In addition to the clarity of the presentation and the wealth of information, this book also contains numerous problems which render it ideal for use in a graduate course in Hodge theory.' Mathematical Reviews Review of previous edition: '... generally more informal and differential-geometric in its approach, which will appeal to many readers ... the book is a useful introduction to Carlos Simpson's deep analysis of the fundamental groups of compact Kahler manifolds using harmonic maps and Higgs bundles.' Burt Totaro, University of Cambridge 'This monograph provides an excellent introduction to Hodge theory and its applications to complex algebraic geometry.' Gregory Pearlstein, Nieuw Archief voor Weskunde Review of previous edition: 'This book, dedicated to Philip Griffiths, provides an excellent introduction to the study of periods of algebraic integrals and their applications to complex algebraic geometry. In addition to the clarity of the presentation and the wealth of information, this book also contains numerous problems which render it ideal for use in a graduate course in Hodge theory.' Mathematical Reviews Review of previous edition: '... generally more informal and differential-geometric in its approach, which will appeal to many readers ... the book is a useful introduction to Carlos Simpson's deep analysis of the fundamental groups of compact Kahler manifolds using harmonic maps and Higgs bundles.' Burt Totaro, University of Cambridge 'This monograph provides an excellent introduction to Hodge theory and its applications to complex algebraic geometry.' Gregory Pearlstein, Nieuw Archief voor Weskunde Review of previous edition: 'This book, dedicated to Philip Griffiths, provides an excellent introduction to the study of periods of algebraic integrals and their applications to complex algebraic geometry. In addition to the clarity of the presentation and the wealth of information, this book also contains numerous problems which render it ideal for use in a graduate course in Hodge theory.' Mathematical Reviews Review of previous edition: '... generally more informal and differential-geometric in its approach, which will appeal to many readers ... the book is a useful introduction to Carlos Simpson's deep analysis of the fundamental groups of compact Kahler manifolds using harmonic maps and Higgs bundles.' Burt Totaro, University of Cambridge Author InformationJames Carlson is Professor Emeritus at the University of Utah. From 2003 to 2012, he was president of the Clay Mathematics Institute, New Hampshire. Most of Carlson's research is in the area of Hodge theory. Stefan Müller-Stach is Professor of number theory at Johannes Gutenberg Universität Mainz, Germany. He works in arithmetic and algebraic geometry, focussing on algebraic cycles and Hodge theory, and his recent research interests include period integrals and the history and foundations of mathematics. Recently, he has published monographs on number theory (with J. Piontkowski) and period numbers (with A. Huber), as well as an edition of some works of Richard Dedekind. Chris Peters is a retired professor from the Université Grenoble Alpes, France and has a research position at the Eindhoven University of Technology, The Netherlands. He is widely known for the monographs Compact Complex Surfaces (with W. Barth, K. Hulek and A. van de Ven, 1984), as well as Mixed Hodge Structures, (with J. Steenbrink, 2008). He has also written shorter treatises on the motivic aspects of Hodge theory, on motives (with J. P. Murre and J. Nagel) and on applications of Hodge theory in mirror symmetry (with Bertin). Tab Content 6Author Website:Countries AvailableAll regions |