|
|
|||
|
||||
OverviewThe author proves the existence of an almost full measure set of $(3n-2)$-dimensional quasi-periodic motions in the planetary problem with $(1+n)$ masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold in the 1960s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, a common tool of previous literature. Full Product DetailsAuthor: Gabriella PinzariPublisher: American Mathematical Society Imprint: American Mathematical Society Weight: 0.200kg ISBN: 9781470441029ISBN 10: 1470441020 Pages: 92 Publication Date: 30 October 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationGabriella Pinzari, Universita di Napoli, Italy. Tab Content 6Author Website:Countries AvailableAll regions |
||||