|
![]() |
|||
|
||||
OverviewThe use of modular product architectures can significantly increase the efficiency in manufacturing companies. Various modularization methods are used in the development of these architectures, but they always result in different architecture alternatives. This thesis describes the development of a model-based simulation for multi-dimensional performance assessment of these architecture alternatives with their corresponding modular kits. The central element of this simulation is formed by a model-based configuration system, identifying individually valid product variants using concepts and tools of Model-based-systems-engineering (MBSE). Based on the developed Hyperspace algorithm, a geometric-mathematical solution approach, these variants are then evaluated considering multiple parameters. By recursively configuring multiple customer requests using alternative modular kits, an individual performance criterion of these alternatives can be generated, including customer-, market- andcompany parameters. This thesis describes the development of the performance simulation on the basis of a simplified explanation example. A validation based on customer-specific laser welding systems is also shown. Full Product DetailsAuthor: Florian M. DambietzPublisher: Springer Fachmedien Wiesbaden Imprint: Springer Vieweg Edition: 1st ed. 2022 Volume: 21 Weight: 0.341kg ISBN: 9783662642351ISBN 10: 3662642352 Pages: 179 Publication Date: 02 October 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Challenges in modular product architecture alternative decisions.- State of the art.- Simulation approach for the performance analysis of modular product architectures.- Validation of the methods.- Conclusion and outlook.ReviewsAuthor InformationDipl.-Wirtsch.-Ing. Florian M. Dambietz studied Business Administration and Engineering with a specialization in mechanical engineering and management at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). He then began working in the areas of technical sales and complexity management at a special equipment manufacturing company for laser machine systems in 2018. He has continued his employment there as Head of Research and Development since 2020. In the period from 2018 to 2021, he dealt with the topics of variant management, Model-based systems engineering and the development of a model-based product configurator as part of his company-related doctorate at the Institute for Product Development and Mechanical Engineering Design (PKT) at the Hamburg University of Technology (TUHH). Tab Content 6Author Website:Countries AvailableAll regions |